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The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic
quantum particles and its formidable potential in various applications, have ensured a rapid
growth of interest in this new material. We report on electron transport in quantum dot devices
carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional
single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller
than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of
quantum confinement. Random peak spacing and its statistics are well described by the theory of
chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive
and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of
molecular-scale electronics based on graphene.

One of the most discussed and tantalizing
directions in research on graphene (1, 2)
is its use as the base material for elec-

tronic circuitry that is envisaged to consist of
nanometer-sized elements. Most attention has
so far been focused on graphene nanoribbons
(3–12). An alternative is quantum dot (QD) de-
vices that, as described below, can be made en-
tirely from graphene, including their central
islands (CIs), quantum barriers, source and drain
contacts, and side-gate electrodes.

Our experimental devices were microfabri-
cated from graphene crystallites prepared by
cleavage on top of an oxidized Si wafer (300
nm of SiO2) (1). By using high-resolution
electron-beam lithography, we defined a 30-nm-
thick polymethylmethacrylate (PMMA) mask
that protected chosen areas during oxygen
plasma etching and allowed us to carve graphene
into a desired geometry. The inset in Fig. 1A
shows one of our working devices that generally
consisted of the CI of diameter D, connected via
two short constrictions to wide source and drain
regions; the devices also had side-gate electrodes
[we often placed them ~1 mm away from the CI
as explained in (13)]. The Si wafer was used as a
back gate. The constrictions were designed to
have equal length and width of 20 nm (13), and
we refer to them as quantum point contacts
(QPCs). They provided quantum barriers to
decouple the CI from the contacts (14, 15). If
necessary, by using further etching (after the
devices were tested), we could narrow QPCs by
several nm, exploiting the gradual etching away
of the PMMA mask not only from top but also
sideways. This allowed us to tune the resistance
of QDs to a value of several hundred kilohm, i.e.,
much larger than resistance quantum h/e2 (e is
the electron charge, and h is Planck’s constant),

which is essential for single-electron transport.
Graphene QDs with features as small as 10 nm
could be fabricated reliably with this approach.
For even smallerD, irregularities in PMMA[~5nm
(16)] became comparable in size with the de-
signed features and, unavoidably on this scale,
we could only estimate the device geometry. The
measurements were carried out using the stan-
dard lock-in technique with dc bias at temper-
atures T from 0.3 to 300 K. We used both side
and back gates; the latter allowed extensive
changes in the population of QD levels, whereas
the former was useful for accurate sweeps over
small energy intervals (13). The response to the
side-gate potential differed for different devices
but could be related to back-gate voltage Vg
through a numerical factor. For consistency, all
the data are presented as a function of Vg.

We have found three basic operational re-
gimes for QDs, depending on their D. Our large
devices exhibit (nearly) periodic Coulomb block-
ade (CB) resonances that at low T are separated
by regions of zero conductanceG (Fig. 1A). As T
increases, the peaks become broader and overlap,
gradually transforming into CB oscillations (Fig.
1B). The oscillations become weaker as G in-
creases with carrier concentration or T, and com-
pletely disappear for G larger than ~0.5e2/h
because the barriers become too transparent to
allow CB. For the data in Fig. 1B, we have iden-
tified more than 1000 oscillations. Their pe-
riodicity, DVg ≈ 16 mV, yields the capacitance
between the back gate and CI, Cg = e/DVg ≈
10 aF, which is close toCg ≈ 2e0(e + 1)D ≈ 20 aF,
as expected for a disk placed on top of SiO2

(dielectric constant e ≈ 4) and at a distance h ≥
D = 250 nm from the metallic Si gate (in this
case,Cg is nearly the same as for an isolated disk)
(17). The difference by a factor of 2 can be
accounted for in terms of screening by the contact
regions (17).

The overall shape of the conductance curve
G(Vg) in Fig. 1B resembles that of bulk
graphene but is distorted by smooth (on the
scale of DVg) fluctuations that are typical for

mesoscopic devices and are due to quantum
interference (1–4, 18–20). Smooth variations in
the CB peak height (Fig. 1A) are attributed to
interference-induced changes in the barriers’
transparency, as shown by studying individual
QPCs (13). Furthermore, we have measured the
dependence of CB on applied bias Vb and, from
the standard stability diagrams (Coulomb
diamonds), found the charging energy Ec. The
lower inset in Fig. 1B shows such diamonds for
D ≈ 250 nm, which yields Ec ≈ 3 meV and the
total capacitance C = e2/Ec ≈ 50 aF. The rather
largeEc implies that the CB oscillations in Fig. 1B
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Fig. 1. Graphene-based single-electron transistor.
(A) Conductance G of a device with the central
island of 250 nm in diameter and distant side
gates (13) as a function of Vg in the vicinity of +15 V
(B); T = 0.3 K. The inset shows one of our smaller
devices to illustrate the high resolution of our
lithography that allows features down to 10 nm.
Dark areas in the scanning electron micrograph
are gaps in the PMMA mask so that graphene is
removed from these areas by plasma etching. In
this case, a 30-nm QD is connected to contact
regions through narrow constrictions and there are
four side gates. (B) Conductance of the same
device as in (A) over a wide range of Vg (T = 4 K).
Upper inset: Zooming into the low-G region re-
veals hundreds of CB oscillations. The lower inset
shows Coulomb diamonds: differential conductance
Gdiff =dI/dV as a function of Vg (around +10 V) and
bias Vb (yellow-to-red scale corresponds to Gdiff
varying from zero to 0.3e2/h).
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are smeared mostly due to an increase in the
barrier transparency with T, and submicrometer
graphene QDs should be operational at T ≥ 10 K.
In general, the observed behavior is in agreement
with the one exhibited by conventional single-
electron transistors (SETs). Such devices were
previously studied with metallic and semicon-
ducting materials (14, 15) and, more recently, the
first SETs made from graphite (18) and graphene
(1, 19, 20) were also demonstrated. The all-
graphene SETs reported here are technologically
simple, reliable, and robust and can operate well
above liquid-helium T, making them attractive
candidates for use in various charge-detector
schemes (14).

For devices smaller than ~100 nm, we
observed a qualitative change in behavior: CB

peaks were no longer a periodic function of Vg
but varied strongly in their spacing (Fig. 2, A and
B, illustrate this behavior forD ≈ 40 nm, whereas
Fig. 2C plots the distance DVg between the
nearest peaks for 140 of them). One can see that
DVg varies by a factor of 5 or more, which ex-
ceeds by orders of magnitude typical variations of
DVg observed in nongraphene QDs (15, 21, 22).
This is a clear indication that the size quantization
becomes an important factor even for such a
modest confinement. The reason for this is that a
typical level spacing dE ≈ vFh/2D for graphene’s
massless carriers [Dirac fermions (1, 2)] in a
quantum box of size D is much larger than dE ≈
h2/8mD2 for massive carriers in other materials
(vF ≈ 106 m/s is the Fermi velocity in graphene,
and m is the effective mass). The distance
between CB peaks is determined by the sum of
charging and confinement energiesDE = Ec + dE,
and the latter contribution becomes dominant for
our devices with D < 100 nm. Accordingly, we
refer to them as QDs rather than SETs (23).
Because Ec is constant for a given QD geometry,
variations in DE (found from the height of
Coulomb diamonds) are due to confinement,
which allows us to estimate characteristic dE (24).
For example, we find dE ~ 10meV for the 40-nm
QD (Fig. 2), in agreement with the above formula
dE ≈ a/D, where coefficient a varies around 0.5
eV⋅nm by a factor of 2 in different models (5–12).

For four devices with different D, we have
carried out statistical analysis of their peak spac-
ing (Fig. 3). As QDs become smaller, the average
distance 〈DVg〉 between CB peaks gradually
increases (Fig. 2A; inset). General expectations
suggest that 〈DVg〉 should be proportional to 1/D,
being determined by two contributions to the QD
capacitance: geometrical and quantum (15).
According to the formula used above, the geo-
metrical capacitance is º D. The quantum
capacitance is given by the confinement energy
and, in the first approximation, is also expected to
vary as D. Indeed, it has been shown (25) that
energy levels Enl of Dirac fermions inside a disk
of diameter D are described by Jl(EnlD/2ħvF) =
Jl+1(EnlD/2ħvF), where n and l are the main and

orbital quantum numbers, respectively, and Jl(x)
are the Bessel functions. This equation yields a
typical level splitting 〈dE〉 º 1/D (25), in quali-
tative agreement with the behavior of 〈DVg〉 in
Fig. 2A.

However, further analysis reveals that the
above simple picture starts to break down forD <
100 nm. One can see from Fig. 3 that the shape of
the spectral distribution notably changes: For
small QDs, the histograms become increasingly
broader, as compared to their average positions.
Also, 〈DVg〉 changes somewhat quicker than 1/D
(Fig. 2A, inset). We have calculated statistical
deviations d(DVg) from the average 〈DVg〉 and
found that d(DVg) grows approximately as 1/D2

with decreasing D (Fig. 2A). For example, for
D ≈ 40 nm, average fluctuations in the peak
spacing become as large as 〈DVg〉 itself, which
essentially means random positions of CB peaks.
The observed behavior contradicts the one ex-
pected for Dirac fermions confined inside an ideal
disk (25).

To explain this discrepancy, we point out that
any confinement of Dirac fermions, except for
the circular one, is predicted to result in quantum
chaos (even the simplest square geometry leads
to chaotic trajectories) (25). In general, chaos is a
common feature of all systems with several
degrees of freedom, whose behavior cannot be
described as a superposition of independent one-
dimensional motions. Classically, this entangle-
ment between different variables leads to an
exponential increase in the distance between two
initially close trajectories with increasing time.
Quantummechanically, chaotic systems are char-
acterized by distinctive statistics of their energy
levels, which must comply with one of the
Gaussian random ensembles, in contrast to the
level statistics for the nonchaotic systems de-
scribed by the Poisson distribution (26).

The experimentally observed level statistics
in graphene QDs agrees well with the one pre-
dicted for chaotic Dirac or “neutrino” billiards
(Fig. 3). Indeed, in our case, the quantum ca-
pacitance is no longerº D because dE changes
asº 1/D2 (25), reflecting the lifting of the level
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Fig. 2. Effect of quantum confinement. CB peaks
(A) and Coulomb diamonds (B) for a 40-nm QD
(T = 4 K). Variations in peak spacing and the size
of diamonds are clearly seen. Yellow-to-red scale
in (B) corresponds to Gdiff varying from zero to
0.4e2/h. Two excited states (marked by additional
lines) are feebly visible around dVg ≈ 150 and
850 mV and Vb ≈ 10 mV. The smearing is caused
by an increase in the transparency of quantum
barriers at higher Vb. Further examples of excited
states are given in the supporting material (13).
(C) Separation of nearest-neighbor peaks at zero
Vb in the same device for a large interval of Vg
(beyond this interval, CB became suppressed by
high transparency of the barriers). Inset in (A):
Log-log plot of the average peak spacing 〈DVg〉
(solid squares) and its standard deviation d(DVg)
(open circles) as a function of D. Linear (〈DVg〉º
1/D, solid line) and quadratic [d (DVg) º 1/D2,
dashed] dependences are plotted as guides to the
eye. The dotted curve is the best fit for the
average peak spacing: 〈DVg〉º 1/Dg yielding g ≈
1.25.

Fig. 3. Level statistics in Dirac billiards.
Histograms of the nearest-neighbor lev-
el spacing in QDs of different D. The
spacing is given directly in terms of DE
(rather than DVg), which was achieved
by measuring the size of Coulomb dia-
monds. This allows the straightforward
comparison between the experiment
and theory (25). The level statistics be-
comes increasingly non-Poissonian for
smaller QDs. This is illustrated for the
smallest device where the red, black,
and blue curves are the best fits for the
Gaussian unitary, Poisson, and Gaussian
orthogonal ensembles, respectively. There
are no states at low DE because the
measured distributions are shifted from
the origin due to CB (Ec is used as a
fitting parameter).
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degeneracy at large n and l, and the number of
states around a given energy is proportional to the
dot areaº D2. This effect is often referred to as
the level repulsion, a universal signature of quan-
tum chaos. The observed random spacing of CB
peaks, random height of Coulomb diamonds,
changes in 〈DVg〉 quicker than 1/D and, especial-
ly, the pronounced broadening of the spectral
distribution all indicate that chaos becomes a
dominant factor for small QDs.

To corroborate this further, Fig. 3 shows that the
observed level spacing is well described by Gauss-
ian unitary distribution (32/p2)dE2exp(−4dE2/p)
(characteristic of chaotic billiards) rather than the
Poisson statistics exp(−dE) expected for integra-
ble geometries (25, 26). The CB energy shifts the
statistical distributions from zero (we measure
DE =Ec + dE rather than dE), and this makes it
difficult to distinguish between unitary and or-
thogonal ensembles. Nevertheless, the Gaussian
unitary distribution fits our data notably better.
This agrees with the theory that expects random
edges to break down the sublattice symmetry
(27) leading to the unitary statistics (25). In terms
of statistics, Dirac billiards are different from the
chaotic wave systems that mimic quantum me-
chanics and are also described by the linear dis-

persion relation (optical, microwave, and acoustic
cavities) but typically obey the Gaussian orthog-
onal statistics (28). Further evidence for the level
repulsion in small QDs is provided by the ab-
sence of any apparent bunching in their spectra
(Fig. 2C). Indeed, despite considerable effort, we
did not find repetitive quartets or pairs of CB
peaks, which in principle could be expected due
to spin and/or valley degeneracy. The latter de-
generacy is lifted by edge scattering (27), whereas
the spin degeneracy may be removed by scat-
tering on localized spins due to broken carbon
bonds (5).

For even smaller devices (D < 30nm), the
experimental behavior is completely dominated by
quantum confinement. They exhibit insulating
regions in Vg sometimes as large as several V,
and their stability diagrams yield the level spacing
exceeding ~50 meV (Fig. 4, A and B). However,
because even the state-of-the-art lithography does
not allow one to control features <10 nm in size,
the experimental behavior varies widely, from
being characteristic of either an individual QD or
two QDs in series or an individual QPC (13). It is
also impossible to relate the observations with the
exact geometry because scanning electron and
atomic forcemicroscopy fail in visualizing the one-
atom-thick elements of several nm in size and often
covered by PMMAor its residue. Nevertheless, we
can still use dE to estimate the spatial scale
involved. Basic arguments valid at a microscopic
scale require a/D ≈ dE/t (where a is the interatomic
distance, and t ≈ 3 eV is the hopping energy),
which again yields dE ≈ a/D with a ≈ 0.5 eV nm.
For example, for theQD shown in Fig. 4withDE≈
40 meV, we find D ~ 15 nm.

Finally, we used our smallest devices (both
QDs and QPCs) to increase dE by further
decreasing their size using plasma etching. Some
of the devices become overetched and stop
conducting, but in other cases we have narrowed
them down to a few nm so that they exhibit the
transistor action even at room T (Fig. 4C). The
device shown appears completely insulating,
with no measurable conductance (G < 10−10 S)
over an extended range of Vg (>30 V) (off state),
but then it suddenly switches on, exhibiting
rather high G ≈ 10−3e2/h. At large biases, we
observe the conductance onset shifting with Vb
(13), which allows an estimate for DE as ≈0.5 eV.
This value agrees with the T dependence
measured near the onset of the on state, which
shows that we do not deal with several QDs in
series [as it was argued to be the case for
nanoribbons (29)]. With no possibility to control
the exact geometry for the nm sizes, we cannot be
certain about the origin of the observed switching.
Also, the exact boundary arrangements (armchair
versus zigzag versus random edge and the ter-
mination of dangling bonds) can be important on
this scale (5–12). Nevertheless, dE ~ 0.5 eVagain
allows us to estimate the spatial scale involved in
the confinement as only ~1 nm.

Our work demonstrates that graphene QDs
are an interesting and versatile experimental

system allowing a range of operational regimes
from conventional single-electron detectors to
Dirac billiards, in which size effects are excep-
tionally strong and chaos develops easily. Unlike
any other material, graphene remains mechani-
cally and chemically stable and highly conduc-
tive at the scale of a few benzene rings, which
makes it uniquely suitable for the top-down
approach to molecular-scale electronics.
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Fig. 4. Electron transport through nm-scale
graphene devices. CB peaks (A) and diamonds (B)
for a QDwith an estimated size ~ 15 nm. (C) Electron
transport through a controllably narrowed device
with a minimal width of only ≈1 nm as estimated
from its DE. Its conductance can be completely
pinched-off even at room T. Fluctuations in the on
state at room T are time dependent (excess noise). At
low T, the on state exhibits much lower G, and the
noise disappears. Occasional transmission resonances
can also be seen as magnified in the inset.
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Materials and Methods 
Different quantum dot designs 

The SEM micrograph in Fig. 1 of the main text shows the basic QD design but is also intended 

to illustrate the high resolution of our electron-beam lithography that allows features as small 

as 10 nm to be made reliably. The shown arrangements of side electrodes would be standard 

for most semiconductor-quantum-dot experiments (S1). However, we have found this design to 

be less efficient for our studies that required sweeps over hundreds of energy levels. Indeed, if 

we place side gates in the immediate proximity of CIs (like shown in Fig. 1), this limits the 

number of levels that could be probed inside our smallest QDs usually down to ∼10 (spacing 

between peaks as a function of back-gate voltage could become as large as 10V). We attribute 

the reduced influence of the back gate to additional strong screening by side electrodes. The 

adjacent side gates are also not efficient enough to scan over many quantum states because of 

the electrical breakdown or leakage along the device surface. To probe hundreds of energy 

levels needed for the analysis presented in the main text, we have often employed the geometry 

shown in Fig. S1, in which side gates are located ~1 μm away from the CI. The back-gate 

voltage is swept typically between ±60V (limited by the onset of a leakage current through the 

gate dielectric), and a distant side gate is used for scans over small energy intervals only.  

 

Graphene-based quantum point contacts  

The graphene constrictions that define quantum dots in our experiments were normally 

designed to have equal length and width w. We have avoided long constrictions as they often 

result in the development of spurious QDs within individual constrictions (S2,S3). Wide 

constrictions (w >40nm) have too high conductance and do not allow Coulomb blockade, 

whereas narrow ones (w <10nm) exhibit large energy gaps with no measurable conductance 

(see further) and, therefore, no possibility to probe states inside QDs. From experience, we 

have found w ≈20nm to be most suitable for making quantum barriers with G less but not much 

less than e2/h, which is optimal for CB measurements (S1). For a reference, Figure S2 shows 

the typical behavior exhibited by such individual constrictions that can also be referred to as 

quantum point contacts (QPC). The overall shape of their G(Vg)-response resembles σ(Vg) for 

bulk graphene with the neutrality point (NP) shifted by chemical doping (to +50V in Fig. S2). 



 2

It is obvious that the behavior of QPCs (with their high G over a large but finite range of gate 

voltages) limits the operation of our quantum dots to regions of less than ∼20V around the G 

minima, where QPCs remain sufficiently low conductive (compare Figs. 1B and S2). 

Individual 20-nm constrictions exhibit mesoscopic (interference) fluctuations as a function of 

Vg (see Fig. S2) but they are normally smooth on a typical scale of CB oscillations. Also, with 

increasing bias Vb, G(Vg)-curves become smoother with the minimum in G(Vg) becoming 

increasingly less pronounced, which replicates the behavior observed with increasing T. 

Importantly, no Coulomb diamonds accompany these fluctuations above 4K, in contrast to the 

behavior reported for graphene nanoribbons (S2-S5) (i.e. in our case, fluctuations decrease in 

amplitude with increasing Vb rather than broaden). This shows that individual QPCs (together 

with their source and drain regions) are only responsible for smooth variations in the height of 

CB peaks (see Fig. 1) and cannot possibly cause random peak positions, which would require 

several QDs in series of approximately the same size, as in the case of stochastic CB (S6) (see 

below).  

 

Nanometer-sized point contacts 

We have also studied QPCs of smaller sizes (design w ≈10 nm). The inset in Figure S3 shows a 

micrograph for one of such nm-scale devices. With changing gate voltage, they usually exhibit 

two well-defined regimes: complete pinch-off with conductance below our detection limit of G 

<10-10 S and a strongly fluctuating finite G. Both regimes persist over extremely large intervals 

of Vg. This obviously makes so narrow QPCs not suitable for the QD design. Figure S3 shows 

that fluctuations in the conducting regime are suppressed at finite biases. Again, no diamonds 

are observed in this regime but instead the amplitude of fluctuations decreases with increasing 

Vb, which is typical for interference phenomena. In contrast, the pinch-off region gradually 

becomes narrower with increasing bias Vb so that only one but huge Coulomb diamond could 

be seen in this regime. For the case of Figure S3, the size of the diamond yields a confinement 

gap δE of ≈150meV. Note that, after oxygen plasma etching, our QPCs become somewhat 

narrower (by a few nm) than their designed width of 10nm. We have also measured the T 

dependence of G in the pinch-off state (inset in Fig. S3) and found an activation gap EA 

∼80meV. The latter is approximately twice smaller than the gap found from the size of the 

diamond, which can be explained by impurity states that “soften” the confinement gap (S7). 
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SOM Text 
Excited states in quantum dots 

The importance of quantum confinement for graphene-based quantum dots is also witnessed 

through the presence of excited states on the stability diagrams (S1). In Fig. 2B such states are 

faint (additional lines have to be drawn to indicate them). This is a common case for our 

quantum dots, in which graphene constrictions rapidly become more conductive under higher 

applied biases, as described above. Accordingly, Coulomb diamonds’ boundaries away from 

zero Vb are smeared by high transparency of the quantum barriers, which blurs diamonds at 

high biases (Fig. 2) and leaves little chance for excited states to be observed. However, in some 

cases, QPCs fortuitously remain resistive enough even at high Vg and excited states could be 

seen rather clearly (see Fig. S4). 

 

Quantum dots in series and stochastic Coulomb blockade 

Although large confinement effects are expected for graphene QDs (as discussed in the main 

text), we have also considered other mechanisms that could cause random positions of CB 

peaks. For example, in the case of stochastic CB (S6), peaks could become seemingly non-

periodic due to the presence of two or more QDs.  

The high accuracy of our electron-beam lithography guarantees that there is no accidental 

additional confinement that would let our devices operate as two or more quantum dots in 

series and lead to stochastic CB. Indeed, this would require a barrier between two QDs with 

resistance ∼h/e2, which as shown above is hard to achieve without an additional constriction 

narrower than ∼30 nm. Our high-resolution lithography and following visualization in a 

scanning electron microscope rule out such constrictions for devices with D ≥30nm (for 

example, see micrographs in Figs. 1 and S3). Furthermore, electron and hole puddles always 

present in graphene near the neutrality point (S8) cannot be responsible for the observations of 

random peaks for several reasons. First, barriers between such puddles are expected to be 

rather transparent because of the Klein tunneling (S9). Second, the reported CB peaks extend 

over a large interval of gate voltages with typically more than one hundred peaks recorded 

whereas puddles are not deep enough to allow more that a couple of electrons inside (S8).  

Still, it is instructive to compare the reported chaotic behavior of CB peaks with the one where 

quantum dots in series cause the stochastic CB. In the latter case, some CB peaks originating 

from one of the QDs completely disappear due to zero G through the other dots and vice versa 

(S6). The critical signature of two or more QDs in series is not only seemingly random 
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positions of CB peaks (statistics would still reveal that they are not random) but also 

accompanying strong variations in their amplitudes (from 100% to a tiny fraction of 1%). 

Moreover, some peaks that are completely suppressed at low T should appear at higher T as the 

conductance of the blocking dot increases.  

This CB behavior is illustrated in Fig. S5. In this case, because of a mistake in lithography, a 

relatively large QD appeared in series with a smaller QD (D ≈20nm) inside one of the barriers 

(as later found in SEM). One can see a seeming random pattern of CB peaks in Fig. S5. 

However, more careful inspection reveals that many of the peaks have a common spacing, and 

most of the larger gaps correspond to the double spacing, which suggests one of the peaks 

missing. When we increase T or Vg, the missing peaks dutifully reveal themselves, as expected 

for stochastic CB (S6). This behavior of double QDs is in stark contrast to the one observed in 

our small individual QDs, in which – despite  the absence of periodicity – CB peaks exhibit 

only smooth variations in their height, no additional peaks appeared at higher biases or with 

increasing T and, probably most convincingly, the T dependence of CB was in agreement with 

the measured size of Coulomb diamonds.    

 

Supporting Figures and Legends 

 

 
 
Figure S1. The scanning electron micrograph (in false color) illustrates the most typical 
design of our quantum dot devices. In this case (D ≈80nm), side-gate electrodes are 
remote and outside the visible frame. Their removal from the immediate vicinity of the 
CI significantly improves its coupling to the back gate allowing scans over hundreds 
rather than dozens of CB peaks. Dark areas in the SEM micrograph are the PMMA 
mask that protected graphene during plasma etching so that it is left only underneath the 
mask. Yellowish regions are Au/Ti contacts.  
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Figure S3. Electron transport through 10-nm graphene constrictions. (a,b) – conductance G as a 
function of back-gate voltage at zero and 100 mV bias, respectively. Mesoscopic fluctuations in 
the conducting regime become suppressed, whereas the pinch-off region becomes narrower, 
indicating a large confinement gap. Inserts: (a) – SEM micrograph of one of our narrow QPCs 
(before plasma etching); and (b) – G in the pinch-off region (Vg≈40V) can be fitted by the 
activation T dependence G ∝exp(-EA/2T).  

 
 

Figure S2. Conductance of an individual 20-nm graphene constriction, similar to those used in 
our quantum dots. Making them short and narrow has ensured that no spurious quantum dots 
were present inside the barriers.  

4K 
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Figure S4. Examples of excited states as observed for two different quantum dots, when the 
barriers remained low conductive (<0.5 e2/h) even at high biases. The red dashed lines (left 
figure) and small white arrows (on the right) are guides to the eye. 

 
Figure S5. Stochastic Coulomb blockade. Two quantum dots in series can lead to 
seemingly random peaks because some of them essentially disappear whereas others have 
tiny amplitudes. We also note that, in rare cases, we succeeded in finding certain 
symmetry for electron and hole peaks. This is the case of this particular device, where the 
neutrality point (revealed by a clear minimum in G at room T) is at Vg ≈0V and the peaks 
are positioned symmetrically with respect to NP as indicated by dotted lines.  
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