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Dirac cones reshaped by interaction effects in
suspended graphene
D. C. Elias1, R. V. Gorbachev1, A. S. Mayorov1, S. V. Morozov2, A. A. Zhukov3, P. Blake3,
L. A. Ponomarenko1, I. V. Grigorieva1, K. S. Novoselov1, F. Guinea4* and A. K. Geim1,3

In graphene, electron–electron interactions are expected to
play a significant role, as the screening length diverges at the
charge neutrality point and the conventional Landau theory
that enables us to map a strongly interacting electronic liquid
into a gas of non-interacting fermions is no longer applicable1,2.
This should result in considerable changes in graphene’s
linear spectrum, and even more dramatic scenarios, including
the opening of an energy gap, have also been proposed3–5.
Experimental evidence for such spectral changes is scarce, such
that the strongest is probably a 20% difference between the
Fermi velocities vF found in graphene and carbon nanotubes6.
Here we report measurements of the cyclotron mass in
suspended graphene for carrier concentrations n varying over
three orders of magnitude. In contrast to the single-particle
picture, the real spectrum of graphene is profoundly nonlinear
near the neutrality point, and vF describing its slope increases
by a factor of more than two and can reach ≈3× 106 m s−1 at
n< 1010 cm−2. No gap is found at energies even as close to the
Dirac point as ∼0.1 meV. The observed spectral changes are
well described by the renormalization group approach, which
yields corrections logarithmic in n.

In the first approximation, charge carriers in graphene behave
like massless relativistic particles with a conical energy spectrum
E = vFh̄k where the Fermi velocity vF plays the role of the effective
speed of light and k is the wave vector. Because graphene’s spectrum
is filled with electronic states up to the Fermi energy, their Coulomb
interaction has to be taken into account. To do this, the standard
approach of Landau’s Fermi-liquid theory, proven successful for
normal metals, fails in graphene, especially at E close to the
neutrality point, where the density of states vanishes. This leads
to theoretical divergences that have the same origin as those in
quantum electrodynamics and other interacting-field theories. In
the latter case, the interactions are normally accounted for by using
the renormalization group theory1, that is, by defining effective
models with a reduced number of degrees of freedom and treating
the effect of high-energy excitations perturbatively. This approach
was also applied to graphene by using as a small parameter either
the effective coupling constant α= e2/h̄vF (refs 7,8) or the inverse
of the number of fermion species in grapheneNf=4 (refs 9,10). The
resultingmany-body spectrum is shown in Fig. 1.

As for experiment, graphene placed on top of an oxidized
Si wafer and with typical n ≈ 1012 cm−2 exhibits vF with the
conventional value v∗F ≈ 1.05 ± 0.1 × 106 ms−1. The value was
measured by using a variety of techniques including the early
transport experiments, in which Shubnikov–de Haas oscillations
(SdHO) were analysed to extract vF (refs 11,12). It has been noted
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Figure 1 | Sketch of graphene’s electronic spectrum with and without
taking into account e–e interactions. The outer cone is the single-particle
spectrum E= vFh̄k, and the inner cone illustrates the many-body spectrum
predicted by the renormalization group theory and observed in the current
experiments. We need to consider this image as follows. Electron–electron
(e–e) interactions reduce the density of states at low E and lead to an
increase in vF that slowly (logarithmically) diverges at zero E. As the Fermi
energy changes, vF changes accordingly but remains constant under the
Fermi surface (note the principal difference from the excitation spectra that
probe the states underneath the surface28).

that v∗F is larger than v0F ≈ 0.85±0.05×106 ms−1, where v0F is the
value accepted for metallic carbon nanotubes (see, for example,
ref. 6). In agreement with this notion, the energy gaps measured
in semiconducting nanotubes show a nonlinear dependence on
their inverse radii, which is consistent with the larger vF in flat
graphene6. The differences between vF in graphene and its rolled-up
version can be attributed to e–e interactions13. Another piece of
evidence came from infrared measurements14 of the Pauli blocking
in graphene, which showed a sharp (15%) decrease in vF on
increasing n from ≈ 0.5 to 2× 1012 cm−2. A similar increase in
vF(≈ 25%) for similar n has recently been found by scanning
tunnelling spectroscopy15. In both cases, the changes were sharper
and larger than the theory predicts for the probed relatively small
intervals of n.

Here, we have studied SdHO in suspended graphene devices
(inset in Fig. 2a). They were fabricated by using the procedures
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Figure 2 | Probing graphene’s electronic spectrum through SdHO. a, Symbols show examples of the T dependence of SdHO for n≈+1.4 and
−7.0× 1010 cm−2 for electrons and holes, respectively. The dependence is well described by the Lifshitz–Kosevich formula (solid curves). The dashed
curves are the behaviour expected for vF = v∗F (in the matching colours). The inset shows a scanning electron micrograph of one of our devices. The vertical
graphene wire is≈2 µm wide and suspended above an oxidized Si wafer attached to Au/Cr contacts. Approximately half of the 300-nm-thick SiO2 was
etched away underneath the graphene structure. b, mc as a function of kF for the same device. m0 is the free-electron mass. It is the exponential
dependence of the SdHO amplitude on mc that enables high accuracy of the cyclotron-mass measurements. The error bars indicate maximum and
minimum values of mc that could fit data such as in a. The dashed curves are the best linear fits mc ∝ n1/2 at high and low n. The dotted line is for the
standard value of vF= v∗F . Graphene’s spectrum renormalized owing to e–e interactions is expected to result in the dependence shown by the solid curve.
c, mc re-plotted in terms of varying vF. The colour scheme is to match the corresponding data in b.

described previously16–18. After current annealing, our devices
exhibited record mobilities µ ∼ 1,000,000 cm2 Vs−1, and charge
homogeneity δn was better than 109 cm−2 such that we observed
the onset of SdHO in magnetic fields B ≈ 0.01 T and the first
quantum Hall plateau became clearly visible in B below 0.1 T
(see Supplementary Information). To extract the information
about graphene’s electronic spectrum, we employed the following
routine. SdHO were measured at various B and n as a function of
temperature (T ). Their amplitude was then analysed by using the
standard Lifshitz–Kosevich formula T/sinh(2π2Tmc/h̄eB), which
holds for the Dirac spectrum19 and enables us to find the effective
cyclotron mass mc at a given n. This approach was previously
employed for graphene on SiO2, and it was shown that, within
experimental accuracy and for a range of n∼1012 cm−2,mc was well
described by dependence mc = h̄(πn)1/2/v∗F , which corresponds to
the linear spectrum11,12.With respect to the earlier experiments, our
suspended devices offer critical advantages. First, in the absence of
a substrate, interaction-induced spectral changes are expected to be
maximal because no dielectric screening is present. Second, the high
quality of suspended graphene has enabled us to probe its spectrum
over a very wide range of n, which is essential as the spectral changes
are expected to be logarithmic in n. Third, owing to low δn, we can
approach theDirac pointwithin a fewmillielectronvolts. This low-E
regime, in which a major renormalization of the Dirac spectrum is
expected, has previously been inaccessible.

Figure 2a shows examples of the T dependence of the SdHO
amplitude at low n (for details, see Supplementary Information).
The curves are well described by the Lifshitz–Kosevich formula but
the inferred mc are half those expected if we assume that vF retains
its conventional value v∗F . To emphasize this profound discrepancy
with the earlier experiments, the dashed curves in Fig. 2a plot
the T dependence expected under the assumption vF = v∗F . The
SdHO would then have to decay twice as fast with increasing T ,
which would result in a qualitatively different behaviour of the
SdHO. From the measuredmc we find vF≈ 1.9 and 2.2×106 ms−1
for the higher and lower |n| in Fig. 2a, respectively. We have
carried out measurements of mc as in Fig. 2a for many different
n, and the extracted values are presented in Fig. 2b for one of the
devices. For the linear spectrum, mc is expected to increase linearly
with kF = (πn)1/2. In contrast, the experiment shows a superlinear

behaviour. Trying to fit the curves in Fig. 2b with the linear
dependence mc(kF), we find vF ≥ 2.5× 106 ms−1 at n< 1010 cm−2
and ≤1.5× 106 ms−1 for n > 2× 1011 cm−2, as indicated by the
dashed lines. The observed superlinear dependence of mc can be
translated into vF varying with n. Figure 2c replots the data in
Fig. 2b in terms of vF = h̄(πn)1/2/mc, which shows a diverging-like
behaviour of vF near the neutrality point. This sharp increase in
vF (by nearly a factor of three with respect to v∗F ) contradicts to
the linear model of graphene’s spectrum but is consistent with the
spectrum reshaped by e–e interactions (Fig. 1).

The data for mc measured in four devices extensively studied
in this work are collected in Fig. 3 and plotted on a logarithmic
scale for both electrons and holes (no electron–hole asymmetry
was noticed). The plot covers the experimental range of |n| from
109 to nearly 1012 cm−2. All the data fall within the range marked
by the two dashed curves that correspond to constant vF = v∗F
and vF = 3× 106 ms−1. We can see a gradual increase in vF as
n increases, although the logarithmic scale makes the observed
threefold increase less dramatic than in the linear presentation of
Fig. 2c. Note that, even for the highest n in Fig. 3, the measured
mc do not reach the values expected for vF = v∗F and are better
described by vF ≈ 1.3v∗F . This could be due to the fact that the
highest n values we could achieve for suspended graphene were
still within a sub-1012 cm−2 range, in which some enhancement in
vF was reported for graphene on SiO2 (refs 14,15). Alternatively,
the difference could be due to the absence of a substrate in our
case. To find out which of the effects dominates, we have studied
high-µ devices made from graphene deposited on boron nitride20,21
(its dielectric constant ε is close to that of SiO2) and found that
mc in the range of n between ≈ 0.1 and 1× 1012 cm−2 is well
described by vF ≈ v∗F (Supplementary Information). This indicates
that the observed difference in mc at high n in Fig. 3 with respect
to the values expected for v∗F is likely to be due to the absence
of dielectric screening in suspended graphene, which maximizes
the interaction effects.

To explain the observed changes in vF, let us first note that, in
principle, not only e–e interactions but also other mechanisms such
as electron–phonon coupling and disorder can lead to changes in
vF. However, the fact that the increase in vF is observed over such
a wide range of E rules out electron–phonon mechanisms, whereas
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Figure 3 | Interaction-induced changes in the cyclotron mass. Different
symbols are the measurements for different devices. The random scatter
characterizes the statistical uncertainty for different samples and
experiments. Blue and green dashed lines are the behaviour expected for
the linear spectrum with constant vF equal to v∗F and 3× 106 m s−1,
respectively. The solid red curve is for the spectrum renormalized by e–e
interactions and described by equation (2) that takes into account the
intrinsic screening self-consistently. The two dotted curves show that the
interaction effects can also be described by a simpler theory (equation (1))
with an extra fitting parameter εG(n), graphene’s intrinsic dielectric
constant. The best-fit curves yield εG≈ 2.2 and 4.9 at low and high ends of
the n range.

the virtual absence of disorder in our suspended graphene makes
the influence of impurities also unlikely. Therefore, we focus on
e–e interactions, in which case graphene’s spectrum is modified as
shown in Fig. 1 and, in the first approximation, can be described by
two related equations8–10,

k
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where ε = (1+ εs)/2 describes the effect of a substrate with a
dielectric constant εs. Equation (1) can be considered as the leading
term in the renormalization group theory expansion in powers of
α = e2/εh̄vF, whereas (2) corresponds to a similar expansion in
powers of 1/Nf (refs 8–10). The diagrams that depict these approx-
imations are given in Supplementary Information. Importantly,
equation (2) includes self-consistently the screening by graphene’s
charge carriers. An approximate scheme to incorporate this in-
trinsic screening while keeping the simplicity of equation (1) is to
define an effective screening constant εG(n) for the graphene layer
and add it to ε (for suspended graphene ε= εG). Then, integrating
equation (1), we obtain the logarithmic dependence8

vF(n)= vF(n0)
[
1+

α

8εG
ln(n0/n)

]
(3)

where n0 is the concentration that corresponds to the ultraviolet
cutoff energy 3, and vF(n0) is the Fermi velocity near the cutoff.
We assume vF(n0)≡ v0F , its accepted value in graphene structures
with weak e–e interaction.

Both approximations result in a similar behaviour of vF(n)
and provide good agreement with the experiment. However,

equation (2) is more general and essentially requires no fitting
parameters because 3 is expected to be of the order of graphene’s
bandwidth and affects the fit only weakly, as log (3). Alternatively,
3 can be estimated from the known value of v0F at high n ≈
5× 1012 cm−2 as 3 = 2.5± 1.5 eV (ref. 22). The solid curves in
Figs 2b,c and 3 show mc(n) and vF(n) calculated by integrating
equation (2) and using 3≈ 3 eV. The dependence captures all the
main features of the experimental data. As for equations (1) and
(3), they enable a reasonable fit by using εG ∼ 3.5 over the whole
range of our n.More detailed analysis (dotted curves in Fig. 3) yields
εG≈ 2.2 and 5 for n∼ 109 and 1012 cm−2, respectively. These values
are close to those calculated in the random phase approximation,
which predicts εG = 1 + πNfe2/8h̄vF. Using this expression in
combination with equation (3) leads to a fit that is practically
indistinguishable from the solid curve given by equation (2). This
could be expected because equation (2) includes the screening
self-consistently, also within the random phase approximation. The
value of εG has recently become a subject of considerable debate23–27.
Our data clearly show no anomalous screening, contrary to the
recent report27 that suggested εG≈ 15, but in good agreement with
measurements reported in ref. 28.

Finally, a large number of theories have been predicting that
the diverging contribution of e–e interactions at low E may
result in new electronic phases28–31, especially in the least-screened
case of suspended graphene with ε = 1. Our experiments shows
the diverging behaviour of vF but no new phases emerge, at
least for n > 109 cm−2 (E > 4meV). Moreover, we can also
conclude that there are no insulating phases even at E as low
as 0.1meV. To this end, we refer to Supplementary Information,
in which we present the data for graphene’s resistivity ρ(n)
in zero B. The peak at the neutrality point continues to grow
monotonically down to 2K, and ρ(T ) exhibits no sign of diverging
(the regime of smearing by spatial inhomogeneity is not reached
even at this T ). This shows that, in neutral graphene in zero
B, there is no gap larger than ≈0.1meV. This observation is
consistent with the fact that vF increases near the neutrality
point, which leads to smaller and smaller α = e2/h̄vF at low
E and, consequently, prevents the emergence of the predicted
many-body gapped states.
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SUPPLEMENTARY INFORMATION: 

Dirac cones reshaped by interaction effects in suspended graphene 

D. C. Elias et al 

#1. Experimental devices 

Graphene monolayers were obtained by micromechanical cleavage of graphite on top of an oxidized 

Si wafer [S1]. In this work, we specially selected long and narrow crystals (typically, 2 to 4 m wide) 

which allowed us to avoid dry etching of graphene mesas. Two-terminal devices such as shown in 

Fig. 2 of the main text were then designed and fabricated by using standard lithography and 

deposition techniques. The 300 nm SiO2 layer was partially etched in a buffered HF solution to leave 

graphene hanging above the substrate. The metal leads (5 nm Cr followed by 100 nm of Au) 

remained not fully etched underneath and served as a mechanical support. These fabrication 

procedures are similar to those described in refs. [S2-S5].  

 

The current annealing was performed in situ, in a liquid-helium bath by applying voltage between 

adjacent contacts. Current densities of ~1 mA/µm were necessary to heat suspended graphene locally 

to T >600oC [S5]. Our devices either fail or anneal after a minor (<1%) increase in applied voltage, 

which we believe is an indication that the real T of annealing could be even higher than suggested in 

ref. [S5].  

 

 

 

 

 

 

 

 

 

Figure S1. Our graphene devices. Left – Scanning electron micrograph of another suspended device, 

different from the one shown in Fig. 2a. Right – Typical behaviour of R(Vg) measured at 2K. The 

curves are shifted for clarity. The QHE in the two probe geometry is known to lead to plateaux in R at 

h/e2. Such QHE plateaux are clearly seen in our devices below 0.1T. The dominant QHE plateau 

(filling factor  = ±2) at R 12.8k is first formed at negative gate voltages where  is somewhat 

higher. Additional peaks at lower |Vg| correspond to  = ±1 and indicate either spin or valley splitting. 

5 m 
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Figure S1 shows two-terminal resistance R as a function of gate voltage Vg in different magnetic 

fields B. We refer to our measurements as two-terminal because the supporting metal contacts overlap 

with the current path (Fig. S1), that is, they are invasive [S6,S7]. In this measurement geometry, we 

found little difference whether we used two- or four-probe measurement geometry because of the 

relatively small resistance of the metal leads.  

 

As one can see in Figure S1, the Landau level splitting occurs at B ~100 G (red and blue curves). The 

observation of SdHO requires B 1, which allows us to estimate quantum mobility  

as ~106 cm2/Vs [S3,S4,S8]. This value is in good agreement with the field-effect  found from 

changes in conductivity  as a function of n in zero B [S4] (also, see Fig. S2). As a further indication 

of the graphene quality, one can see that the first quantum Hall effect (QHE) plateau develops at 

600 G for holes (green curve; negative Vg) and becomes fully formed for both electrons and holes at 

1000 G (violet). Also, the 4-fold degeneracy of the lowest LL becomes lifted already at ~600 G 

(green). 

 
Figure S2. No discernable gap in neutral graphene. (a) – R as a function of concentration n in a 

suspended device at various T in zero B. The peak at the Dirac point continues to sharpen with 

decreasing T but R remains finite, with no sign of a gap: that is, R(T) does not diverge at T0.  

(b) – The device’s maximum resistance as function of T. The points are the experimental data and the 

dashed curve is a guide to the eye. The practically linear dependence R(T) is puzzling and may be 

related to the transition from the dependence R  1/T2 found at high T (due to thermally generated 

carriers at the NP) to the pseudo-diffusive regime with a finite conductivity in the limit of low T.  

 

Charge inhomogeneity n is usually estimated from smearing of the resistance peak near the NP. 

However, in our devices, the peak continues sharpening down to 2 K (Fig. S2), the lowest T in the 

current experiments. This shows that the thermal generation of electrons and holes at the NP 
3 

 

dominates any remnant charge inhomogeneity, which yields n less than ~108 cm-2, that is of about 

one electron per square m. In order to extract cyclotron mass mc it was necessary to measure SdHO 

at many different T. This effectively led to n being determined by T rather than real inhomogeneity 

and limited our mc measurements to n 109 cm-2. Furthermore, the smooth monotonic behaviour of R 

as a function of both n and T (see Fig. S2) implies that, except for the discussed logarithmic 

corrections, no dramatic reconstruction of the Dirac spectrum occurs at E down to 1 meV  

(n 108 cm-2). Otherwise, one would expect to observe some anomalies in R(n,T) whereas the 

presence of an energy gap larger than ~0.1 meV would be seen as diverging R(T0). 

 

#2. Analysis of Shubnikov–de Haas oscillations 

We have measured the cyclotron mass mc in graphene by analysing T dependence of SdHO. This 

well-established approach has widely been used in literature [S9-S10]. In the case of graphene, the 

approach provided accurate measurements of mc which retrospectively were found in good agreement 

with the results obtained by other techniques (e.g., magneto-optics and tunnelling microscopy). In 

brief, our procedures involved measurements of suspended graphene’s conductance G =1/R as a 

function of n at a given B. Then, we changed T and repeated the measurements. T and B were always 

chosen to keep far away from the QHE regime so that changes in conductance G << G.  

 
Figure S3. (a) – G(n) for a suspended graphene device in B =0.5 T at several T. The dashed curve 
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Examples of our raw data are shown Figure S3a. SdHO are clearly seen on top of the standard V-

shaped background. This background is smooth and, for easier analysis, can be subtracted. We have 

done this separately for electrons and holes. To standardise the procedures, we normally defined the 
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background by fitting a 4th-order polynomial to one of high-T curves G(n) with no discernable 

oscillations, as illustrated in Fig. S3a. The subtraction resulted in curves such as shown in Fig. S3b. 
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yielded the data such as shown in Fig. 2a of the main text. Typically, we used 10 different T to obtain 

each value of mc. The results were practically independent of the choice of subtracted background and 

other procedural details, essentially due to the fact that we analyzed the difference between minima 

and maxima. 

 

#3. Influence of a dielectric substrate  
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F 1.050.1x106 m/s 

for the typically accessible range of n ~1012 cm-2. The measurements for suspended graphene reported 

in the main text show a slightly higher vF (15 to 25%) for the same range of n. This disagreement can 
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exclude any systematic error arising due to the use of devices with drastically different mobilities ( 

differ by a factor of 100 for suspended graphene and graphene on SiO2), we performed measurements 

of mc(n) for graphene on boron nitride (GBN). The latter devices allow  >100,000 cm2/V and, at the 

same time, e-e interactions are screened in a manner similar to the case of graphene on SiO2 (boron 

nitrite exhibits s 5 [S11]).  

 

Our GBN devices were fabricated as described in refs. [S12,S13] and one of the studied devices is 

shown in Fig. S4. To find mc, we performed the same measurements and analysis as described in the 

previous chapter. The resulting dependence mc(n) is shown in Fig. S4. The accessible range of n was 

limited to 1011cm-2 due to charge inhomogeneity that was smaller than in graphene on SiO2 but still 

significant, in agreement with refs. [S13,S14]. The dashed curve corresponds to a constant vF = v*
F 

and provides an excellent description of our data within this limited range of n, similar to the case of 

graphene on SiO2. This strongly supports the argument that vF in graphene on a substrate is lower 
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To check our analysis of the renormalized spectrum for consistency, the solid and dotted curves in 

Figure S4 show mc(n) calculated by using to equation (2). The dotted line is the same theory curve 

shown in Figs. 2c and 3 of the main text for suspended graphene, which corresponds to the case of 

 =1 and 3eV. On the other hand, the solid line was calculated by using the same equation and 

only adding the dielectric screening due to boron nitride with no change in other parameters. The 

agreement between the experiment and theory is impressive and shows that our theoretical 
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description is able to explain not only the n dependence of the Fermi velocity but, also, its 

dependence on dielectric screening.  

Figure S4. Cyclotron mass as function 

of n for graphene on boron nitride. The 

symbols are experimental data; the 

dashed line is the non-interacting 

behaviour with constant vF = v*
F. The 

RGT approach, which is used in the 

main text to describe mc(n) in 

suspended graphene over a wide range 

of n, is also consistent with the limited-

range data for GBN devices. The dotted 

curve is given by equation (2) of the 

main text (=1;  =3eV) whereas the 

solid one is for s=5;  =3eV (no fitting 

parameters). The inset shows an optical 

micrograph of a Hall bar device made from graphene deposited on BN (no encapsulating  

top layer [S13]). For clarity, the contrast of the 1m wide graphene mesa was digitally enhanced.  

 

#4. Interaction renormalization of the Dirac spectrum in various approximations 

Near the NP, screening is weak due to the low density of states and completely suppressed in neutral 

graphene because the density of states goes to zero. As a result, electronic levels become increasing 

affected by e-e interactions as their energy approaches the Dirac point. The Hartree-Fock correction 

to the quasiparticle energy is given by 
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Figure S5. Sketch for the Renormalization Group procedure used to 

explain the experimental observations. Coulomb interactions between 

low- and high- E states deplete the electronic spectrum near the Dirac 

point.  

 

An improvement over the Hartree-Fock approximation can be achieved 

by calculating changes in vF for low-E quasiparticles, which are induced 

by their interaction with high-E excitations in the interval of energies 

  E   and defining a new model for the electronic spectrum in 

which these excitations are removed, as schematically shown in Fig. S5. Within this model, vF is 

described by 
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This result reproduces equation (1) in the main text. Using the same analysis, it can be shown that 

there is no need to modify other parameters in the Hamiltonian. This scheme defines the RGT 

transformation that is exact in the limit  = e2/vF <<1. The self energy diagram that gives rise to 

eq. (1) is shown in Fig. S6a. However, the above limit is not valid for graphene where the effective 

fine structure constant2. The fact that  is of order unity makes it problematic to use the standard 

expansion methods. This problem can be overcome by using the expansion in powers of 1/Nf as 

described below. 

 

Figure S6. (a) – Diagram that leads to 

eq. (1) of the main text. (b) – The 

diagram takes into account self-

screening. 

 

 

Equations (1) and (S1-S4) include only screening effects due to environment of the graphene sheet, 

which is described by the dielectric constant . The intrinsic screening by charge carriers can also be 

added in a phenomenological way by redefining  and introducing G as discussed in the main text. 

Alternatively, a better description can be achieved by self-consistently including the screening 
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processes into the interaction line in Fig. S6a. The resulting diagram is shown in Fig. S6b, and this 

leads to equation (2) of the main text. Furthermore, it can be shown that the infinite summation of 

polarization bubbles in the second diagram results in the approximation that becomes exact if Nf >>1. 

In graphene, Nf =4 so that the approximation’s accuracy is comparable to similar calculations used in 

quantum chromodynamics [S15]. 

 

The analysis of experimental results in the main text is mainly based on the above eq. (2) because this 

approach does not require any prior knowledge of the electronic polarizability,  or G. Furthermore, 

eq. (2) allows us to determine the value of G for different n, which has become a subject of debate 

after anomalously large G 15 were reported [S16]. We have found significantly smaller G (see the 

main text). This is in agreement with the RGT expectations and, also, the measurements of electron-

plasmon satellites (“plasmarons”), which were reported in ref. [S17] and yielded the bare fine 

structure constant 2.2 (cf. the best fits to our data gives  2.4). 

 

Finally, it is instructive to compare the renormalized Dirac spectrum inferred from our measurements 

and shown in Fig. 1 with the excitation spectra modified by interactions and schematically shown in 

Fig. 1H of ref. [S17]. In our case, we probe vF as function of n (or the Fermi energy EF) and its value 

changes each time we change the low energy cut-off, that is, EF. The spectrum under the Fermi 

surface is expected to be linear but its slope (that is, vF) changes from measurement to measurement. 

In ref. [S17], the excitation spectra for Dirac fermions are probed underneath the Fermi surface and 

the cut-off is fixed for all E by either a given n or excitations’ energy, whichever value is larger. 

There is no disagreement between the two figures: these are just the spectra referring to different 

many-body phenomena.  

 

#5. Influence of disorder 

The RGT flow that describes the dependence of vF on energy leads to changes in this parameter, 

which can be comparable to v0
F, the initial values of the parameter itself. On the other hand, other 

couplings such as electron-phonon [S18] and electron-plasmon interactions [S17] can be treated 

within a perturbation theory because they do not lead to logarithmic divergences. Therefore, it can be 

expected that their effect on the Fermi velocity does not exceed a fraction of its value and, 

accordingly, they cannot explain the large enhancement observed in the experiment. The only other 

interaction that can lead to logarithmic renormalization is the coupling to some types of scalar and 

gauge random disorder [S19-S21]. However, the arising corrections have the opposite sign with 
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respect to that due to electron-electron interactions. Furthermore, the disorder can be described by the 

dimensionless parameter 

 ~ V2(l/vF)2                                                               (S5) 

where V2 gives the average value of the disorder, and l is the range over which it is correlated. This 

gives rise to a scattering time  

h/ ~EF                                                                    (S6) 

where EF is the Fermi energy. In order to significantly change the effect of electron-electron 

interaction, the value of  should be comparable to e2/vF. The long mean free path, characteristic of 

the suspended graphene studied in this work, rule out the existence of such strong disorder. 
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