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Energy gaps and a zero-field quantum Hall effect
in graphene by strain engineering
F. Guinea1*, M. I. Katsnelson2 and A. K. Geim3*
Among many remarkable qualities of graphene, its electronic
properties attract particular interest owing to the chiral
character of the charge carriers, which leads to such unusual
phenomena as metallic conductivity in the limit of no carriers
and the half-integer quantum Hall effect observable even
at room temperature1–3. Because graphene is only one atom
thick, it is also amenable to external influences, including
mechanical deformation. The latter offers a tempting prospect
of controlling graphene’s properties by strain and, recently,
several reports have examined graphene under uniaxial
deformation4–8. Although the strain can induce additional
Raman features7,8, no significant changes in graphene’s band
structure have been either observed or expected for realistic
strains of up to ∼15% (refs 9–11). Here we show that a
designed strain aligned along three main crystallographic
directions induces strong gauge fields12–14 that effectively
act as a uniform magnetic field exceeding 10 T. For a finite
doping, the quantizing field results in an insulating bulk and
a pair of countercirculating edge states, similar to the case
of a topological insulator15–20. We suggest realistic ways of
creating this quantum state and observing the pseudomagnetic
quantum Hall effect. We also show that strained superlattices
can be used to open significant energy gaps in graphene’s
electronic spectrum.

If a mechanical strain ∆ varies smoothly on the scale of
interatomic distances, it does not break the sublattice symmetry
but rather deforms the Brillouin zone in such a way that the Dirac
cones located in graphene at points K and K′ are shifted in the
opposite directions2. This is reminiscent of the effect induced on
charge carriers by magnetic field B applied perpendicular to the
graphene plane2,12–14. The strain-induced, pseudomagnetic field BS
or, more generally, gauge-field vector potential A has opposite
signs for graphene’s two valleys K and K′, which means that elastic
deformations, unlikemagnetic field, do not violate the time-reversal
symmetry of a crystal as a whole12–14,21,22.

On the basis of this analogy between strain andmagnetic field, we
ask the following question. Is it possible to create such a distribution
of strain that it results in a strong uniform pseudomagnetic field BS
and, accordingly, leads to a ‘pseudo-quantum Hall effect (QHE)’
observable in zero B? The previous attempts to engineer energy
gaps by applying strain5–7 seem to suggest a negative answer.
Indeed, the hexagonal symmetry of the graphene lattice generally
implies a highly anisotropic distribution of BS (refs 21, 22).
Therefore, the strain is expected to contribute primarily in the
phenomena that do not average out in a random magnetic field,
such as weak localization13,14. Furthermore, a strong gauge field
implies the opening of energy gaps owing to Landau quantization,
δE ≈ 400K

√
B (>0.1 eV for BS = 10 T), whereas no gaps were
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theoretically found for uniaxial strain as large as ≈25% (ref. 4).
The only way to induce significant gaps known so far is to spatially
confine carriers (δE ≈ 0.1 eV requires 10-nm-wide ribbons)1,2.
Contrary to these expectations, we have found that by applying
stresses with triangular symmetry it is possible to generate a uniform
quantizing BS equivalent to tens of Tesla so that the corresponding
gaps exceed 0.1 eV and are observable at room temperature.

A two-dimensional strain fielduij(x,y) leads to a gauge field23,24

A=
β

a

(
uxx−uyy
−2uxy

)
(1)

where a is the lattice constant, β = −∂ ln t/∂ lna ≈ 2 and t the
nearest-neighbour hopping parameter, and the x-axis is chosen
along a zigzag direction of the graphene lattice. In the following,
we consider valley K, unless stated otherwise. We can immediately
see that BS can be created only by non-uniform shear strain. Indeed,
for dilation (isotropic strain), equation (1) leads to A= 0 and, for
the uniform strain previously considered in refs 4–6, to A= const,
which also yields zero BS.

Using polar coordinates (r,θ), equation (1) can be rewritten as
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which yields the pseudomagnetic field

BS=
∂Ay
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In the radial representation, it is easy to show that uniform BS is
achieved for the following displacements:

ur = cr2 sin3θ, uθ = cr2cos3θ (2)

where c is a constant. The strain described by (2) and its
crystallographic alignment are shown in Fig. 1a,b, respectively.
This yields uniform BS = 8βc/a (given in units h̄/e ≡ 1). For a
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Figure 1 |Designed strain can generate a strictly uniform pseudomagnetic field in graphene. a, Distortion of a graphene disc which is required to
generate uniform BS. The original shape is shown in blue. b, Orientation of the graphene crystal lattice with respect to the strain. Graphene is stretched or
compressed along equivalent crystallographic directions 〈100〉. Two graphene sublattices are shown in red and green. c, Distribution of the forces applied
at the disc’s perimeter (arrows) that would create the strain required in a. The uniform colour inside the disc indicates strictly uniform pseudomagnetic
field. d, The shown shape allows uniform BS to be generated only by normal forces applied at the sample’s perimeter. The length of the arrows indicates the
required local stress.

0

0

1

3

2

+BS

–BS

–0.2 –0.1 0
E (eV)

0.1 0.2

D
 (
E)

a b

Figure 2 | Stretching graphene samples along 〈100〉 axes always generates a pseudomagnetic field that is fairly uniform at the centre. a, Distribution of
BS for a regular hexagon stretched by its three sides oriented perpendicular to 〈100〉. Other examples are given in the Supplementary Information.
b, Normalized density of states for the hexagon in a with L= 30 nm and ∆m= 1%. The black curve is for the case of no strain and no magnetic field. The
peak at zero E is due to states at zigzag edges. The blue curve shows the Landau quantization induced by magnetic field B= 10 T. The pseudomagnetic field
with BS≈ 7 T near the hexagon’s centre induces the quantization shown by the red curve. Comparison between the curves shows that the smearing of the
pseudo-Landau levels is mostly due to the finite broadening Γ = 2 meV used in the tight-binding calculations (Γ corresponds to submicrometre mean free
paths attainable in graphene devices). The inhomogeneous BS plays little role in the broadening of the first few pseudo-Landau levels (see
Supplementary Fig. S4).

disc of diameter D, which experiences a maximum strain ∆m at
its perimeter, we find c =∆m/D. For non-ambitious ∆m = 10%
and D= 100 nm, we find BS ≈ 40 T, the effective magnetic length
lB =
√
aD/8β∆m ≈ 4 nm and the largest Landau gap of ≈0.25 eV.

Note that distortions (2) are purely shear and do not result in any
changes in the area of a unit cell, which means that there is no
effective electrostatic potential generated by such strain23.

The lattice distortions in Fig. 1a can be induced by in-plane
forces F applied only at the perimeter and, for the case of a disc,
they are given simply by

Fx(θ)∝µsin(2θ), Fy(θ)∝µcos(2θ)

where µ is the shear modulus. Figure 1c shows the required force
pattern. It is difficult to create such strain experimentally because
this involves tangential forces and both stretching and compression.
To this end, we have solved an inverse problem to find out whether
uniform BS can be generated by normal forces only (Supplementary

Information, part I). There exists a unique solution for the shape of
a graphene sample that enables this (see Fig. 1d).

A strong pseudomagnetic field should lead to Landau quan-
tization and a QHE-like state. The latter is different from the
standard QHE because BS has opposite signs for charge carriers in
valleys K and K′ and, therefore, generates edges states that circulate
in opposite directions. The coexistence of gaps in the bulk and
counterpropagating states at the boundaries without breaking the
time-reversal symmetry is reminiscent of topological insulators15–20
and, in particular, the quantum valley Hall effect in ‘gapped
graphene’20 and the quantum spin Hall effect induced by strain16.
The latter theory has exploited the influence of three-dimensional
strain on spin–orbit coupling in semiconductor heterostructures,
which can lead to quasi-Landau quantization with opposite BS
acting on two spins rather than valleys. Weak spin–orbit coupling
allows only tiny Landau gaps < 1 µeV (ref. 16), which, to be
observable, would require temperatures below 10mK and carrier
mobilities higher than 107 cm2 V s−1. Our approach exploits the
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Figure 3 | Energy gaps can be opened in strained graphene superlattices. a, Strain with triangular symmetry can be created by depositing graphene on
profiled surfaces (dimensions in the plot are given in nanometres). The corrugations shown in a result in the distribution of pseudomagnetic field plotted
in b. BS varies in the range±0.5 T (red to violet) with the periodicity half that in a. c, Low-energy bands induced by the periodic strain. The bands are
symmetric with respect to zero E.

unique strength of pseudospin–orbit coupling in graphene, which
leads to δE > 0.1 eV and makes the strain-induced Landau levels
realistically observable.

The two cases shown in Fig. 1 prove that by using strain it is
possible to generate a strong uniform BS and observe the pseudo-
QHE. They also prove the general concept that if the strain is applied
along all three 〈100〉 crystallographic directions tomatch graphene’s
symmetry this prevents the generated fields from changing sign.
However, it is a difficult experimental task to generate such a
complex distribution of forces as shown in Fig. 1. Below we develop
the found concept further and show that the pseudo-QHE can be
observed in geometries that are easier to realize, even though they
do not provide a perfectly uniform BS.

Let us consider a regular hexagon with side length L and normal
stresses applied evenly at its three non-adjacent sides and along
〈100〉 axes (Fig. 2a). Our numerical solution for this elasticity
problem shows that BS has a predominant direction (positive for
K and negative for K′) and is fairly uniform close to the hexagon’s
centre. AssumingL=100 nmand∆m=10%,we find for Fig. 2a that
BS varies in the range±22 T but is≈20 T overmost of the hexagon’s
central area. For other L and ∆, we can rescale the plotted values
of BS by using the expression BS ∝∆m/L. We have also examined
other geometries and always found a nearly uniform distribution of
BS near the sample’s centre (see Supplementary Information).

To verify that the non-uniform BS in Fig. 2a leads to well-
defined Landau quantization, we have calculated the resulting
density of states D(E). To this end, we have used the scaling
properties of the Dirac equation, which allows us to extrapolate
the low-energy spectrum of small lattices to larger systems. The
scaling approach is unfortunately limited to sizes L ≈ 30 nm
(Supplementary Information, part V). Figure 2b plots our results
for ∆m = 1% (BS ≈ 7 T at the hexagon centre) and compares
them for the case of the same hexagon in B = 0 and 10 T but
without strain. In the absence of strain or B, the peak at zero E
is due to the states localized at the edges2. This peak increases
with increasing strain, and its development is better seen in D(E)
calculated at the centre of the hexagon (Supplementary Fig. S5).
We can also see that both non-uniform BS and uniform B generate
Landau levels, and the qualities of the induced quantization are
fairly similar. In Fig. 2b and Supplementary Fig. S5, the width of
the zero-E peak and the remnant density of states between zero and
adjacent peaks are determined by the finite broadening (∼2meV)
introduced in the calculation of Green’s function, whereas the
next two levels are slightly broadened by non-uniform BS. In
general, the influence of the inhomogeneity in BS on the zero level
should be minimal because field inhomogeneity does not lead to
broadening of this level25. We emphasize that the smearing of the
Landau levels in Fig. 2b is mostly due to the small sample size

used in calculations and, for micrometre-sized hexagons, the first
few pseudo-Landau levels should be well resolved in experiment
(Supplementary Fig. S4).

To create the required strain, we can generally think of exploiting
the difference in thermal expansion of graphene and a substrate11
and apply temperature gradients along 〈100〉 axes. For the case
of quasi-uniform BS, there are many more options available,
including the use of suspended samples and profiled substrates.
For example, a graphene hexagon can be suspended by three
metallic contacts attached to its sides, similar to the technique
used to study suspended graphene26,27, and the strain can then
be controlled by gate voltage. Alternatively, a quasi-uniform BS
can be created by depositing graphene over triangular trenches
(Supplementary Information).

To probe the pseudo-Landau quantization, we can use optical
techniques, for example Raman spectroscopy, which should
reveal extra resonances induced by BS (ref. 28). This technique
should allow detection of pseudomagnetic field locally, within
submicrometre areas. We can also use transport measurements in
both standard and Corbino-disc geometries. In the former case, the
counterpropagating edge states imply that contributions from two
valleys cancel each other and no Hall signal is generated (ρxy = 0)
(refs 15–20). At the same time, the edge transport can lead to
longitudinal resistivity ρxx = h/4e2N where N is the number of
spin-degenerate Landau levels at the Fermi energy. This non-zero
quantized ρxx has the same origin as in so-called dissipative QHE,
where two edge states with opposite spins propagate in opposite
directions29. In spin-based topological insulators, the edge transport
is protected by slow spin-flip rates15,16,29. In our case, atomic-scale
disorder at the edges is likely to mix the countercirculating states on
a submicrometre scale (Supplementary Information, section VI).
Therefore, instead of quantization in ρxx we may expect highly
resistive metallic edge states, similar to the case discussed in ref. 29.
The suppression of the edge-state ballistic transport does not affect
the pseudo-Landau quantization in graphene’s interior, where
intervalley scattering is very weak13,30 and should not cause extra
level broadening. Highly resistive edges should in fact make it easier
to probe pseudo-Landau gaps in the bulk. In the Corbino geometry,
the edge-state mixing is irrelevant, and we expect two-probe ρxx
to be a periodic function of gate voltage and show an insulating
behaviour between pseudo-Landau levels. Furthermore, the outer
contact can be used to cover perimeter regions, in which BS is
non-uniform. This should improve the quality of quantization.

Finally, we point out that the developed concept can be used to
create gaps in bulk graphene. Imagine amacroscopic graphene sheet
deposited on top of a corrugated surface with a triangular landscape
(Fig. 3a). In the following calculations, we have fixed the graphene
sheet at the landscape’s extrema and enabled the resulting in-plane
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displacements to relax21,22 (at the nanoscale, graphene should then
be kept in place by van der Waals forces). The resulting pseudo-
magnetic superlattice is plotted in Fig. 3b whereas Fig. 3c shows the
resulting energy spectrum. Close to zero E , there is a continuous
band of electronic states, in agreement with the fact that the zero
level is insensitive to the field’s inhomogeneity25. At higher E , there
are multiple gaps with δE> 100K. The relatively small gaps are due
to the weak shear strain induced in this geometry (∆m< 0.1%). By
improving the design of strained superlattices, it must be possible to
achieve much larger gaps. We believe that the suggested strategies
to observe the pseudo-Landau gaps and QHE are completely
attainable andwill be realized sooner rather than later.
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