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The structure of suspended graphene sheets
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The recent discovery of graphene has sparked much interest, thus
far focused on the peculiar electronic structure of this material, in
which charge carriers mimic massless relativistic particles1–3.
However, the physical structure of graphene—a single layer of
carbon atoms densely packed in a honeycomb crystal lattice—is
also puzzling. On the one hand, graphene appears to be a strictly
two-dimensional material, exhibiting such a high crystal quality
that electrons can travel submicrometre distances without scatter-
ing. On the other hand, perfect two-dimensional crystals cannot
exist in the free state, according to both theory and experiment4–9.
This incompatibility can be avoided by arguing that all the gra-
phene structures studied so far were an integral part of larger
three-dimensional structures, either supported by a bulk substrate
or embedded in a three-dimensional matrix1–3,9–12. Here we report
on individual graphene sheets freely suspended on a microfabri-
cated scaffold in vacuum or air. These membranes are only one
atom thick, yet they still display long-range crystalline order.
However, our studies by transmission electron microscopy also
reveal that these suspended graphene sheets are not perfectly
flat: they exhibit intrinsic microscopic roughening such that
the surface normal varies by several degrees and out-of-plane
deformations reach 1 nm. The atomically thin single-crystal mem-
branes offer ample scope for fundamental research and new tech-
nologies, whereas the observed corrugations in the third
dimension may provide subtle reasons for the stability of two-
dimensional crystals13–15.

Whether a strictly two-dimensional (2D) crystal can exist was first
raised theoretically more than 70 years ago by Peierls4,5 and Landau6,7.
They showed that, in the standard harmonic approximation16, ther-
mal fluctuations should destroy long-range order, resulting in melt-
ing of a 2D lattice at any finite temperature. Furthermore, Mermin
and Wagner proved that a magnetic long-range order could not exist
in one and two dimensions17 and later extended the proof to crystal-
line order in 2D8. Importantly, numerous experiments on thin films
have been in accord with the theory, showing that below a certain
thickness, typically of dozens of atomic layers, the films become
thermodynamically unstable (segregate into islands or decompose)
unless they constitute an inherent part of a three-dimensional (3D)
system (such as being grown on top of a bulk crystal with a matching
lattice)18–20. However, although the theory does not allow perfect
crystals in 2D space, it does not forbid nearly perfect 2D crystals in
3D space. Indeed, a detailed analysis of the 2D crystal problem
beyond the harmonic approximation has led to the conclusion13–15

that the interaction between bending and stretching long-wavelength
phonons could in principle stabilize atomically thin membranes
through their deformation in the third dimension15. Indeed, the
experiments described here show that freely suspended graphene
crystals can exist without a substrate, and exhibit random elastic
deformations involving all three dimensions.

The preparation of graphene membranes used in this study is
described in the text of the Supplementary Information and in

Supplementary Fig. 1. Briefly, we used the established procedures9

of micromechanical cleavage and identification of graphene, fol-
lowed by electron-beam lithography and a number of etching steps,
to obtain graphene crystallites attached to a micrometre-sized metal-
lic scaffold. Figure 1 shows the bright-field transmission electron
microscopy (TEM) image of one of our samples. The central parts
of the prepared membranes normally appear on TEM images as
homogeneous and featureless regions, whereas the membranes’ edges
tend to scroll (Fig. 1). Also, we often observed folded regions in which
a graphene sheet became partly detached from the scaffold during
microfabrication (right side of Fig. 1). Such folds provide a clear TEM
signature for the number of graphene layers. A folded graphene sheet
is locally parallel to the electron beam and, for monolayer graphene, a
fold exhibits only one dark line (Fig. 2a), similar to TEM images from
one-half of a single-walled carbon nanotube. For comparison, Fig. 2b
shows a folded edge of bilayer graphene, which exhibits two dark
lines, as in the case of double-walled nanotubes. One has to be careful,
however, because scrolls and multiple folds can give rise to any
number of dark lines even for monolayer graphene, as indeed
observed experimentally.

In addition, we could directly distinguish between monolayer gra-
phene and thicker samples by analysing nanobeam electron diffrac-
tion patterns from their flat areas as a function of incidence angle.
This procedure effectively allowed us to probe the whole 3D recip-
rocal space. Figure 2 shows examples of diffraction patterns at three
tilt angles for the graphene membrane of Fig. 1. As expected, there are
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Figure 1 | Suspended graphene membrane. Bright-field TEM image of a
suspended graphene membrane. Its central part (homogeneous and
featureless region indicated by arrows) is monolayer graphene. Electron
diffraction images from different areas of the flake show that it is a single
crystal without domains. We note scrolled top and bottom edges and a
strongly folded region on the right. Scale bar, 500 nm.
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two dominant reflections corresponding to periodicities of 2.13 and
1.23 Å, and weak higher-order peaks. The key for the identification of
monolayer graphene is that its reciprocal space (Fig. 3) has only the
zero-order Laue zone and, therefore, no dimming of the diffraction
peaks should occur at any angle, in contrast to the behaviour of
crystal lattices extended in the third dimension. This is exactly the
behaviour we observed experimentally. Figure 2f plots the total
intensity for diffraction peaks (0–110) and (1–210) as a function of
tilt angle for monolayer graphene. One can see that changes in the

total intensity are relatively small and, importantly, there are no
minima, in agreement with our numerical simulations (see Fig. 2
legend). For comparison, Fig. 2g shows the corresponding behaviour
for bilayer graphene, where the total intensities vary so strongly
that the same peaks become completely suppressed at some angles
and the underlying sixfold symmetry remains undisturbed only for
normal incidence. The diffraction analysis also shows that our bilayer
membranes retained the Bernal (AB) stacking of bulk graphite, in
contrast to the AAA... stacking reported in ‘‘carbon nanofilms’’21.
Independently of stacking order, the weak monotonic variation of
diffraction intensities with tilt angle is a signature specific to mono-
layer graphene and can be used for its unambiguous identification in
TEM.

Notwithstanding the overall agreement, there is one feature in the
observed diffraction patterns that strongly disagrees with our numer-
ical simulations and, more generally, with the standard diffraction
behaviour in 3D crystals22,23. We can clearly see that the diffraction
peaks in Fig. 2 become broader with increasing tilt angle and this
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Figure 2 | Transmission electron microscopy of graphene. a, b, TEM
images of folded edges for monolayer and bilayer graphene, respectively,
using a Philips CM200 TEM. Scale bars, 2 nm. c–e, Electron diffraction
patterns from a graphene monolayer under incidence angles of 0u, 14u and
26u, respectively. The tilt axis is horizontal. Here we used a Zeiss 912 TEM
operated at 60 kV in the Köhler condition with the smallest (5 mm)
condenser aperture. This allowed us to obtain a small, almost parallel beam
with an illumination angle of 0.16 mrad and an illumination area of only
250 nm in diameter. The diffraction patterns were recorded on a charge-
coupled device (CCD) for further quantitative analysis. The peaks become
broader with increasing tilt, and this effect is strongest for peaks further away
from the tilt axis. To label equivalent Bragg reflections, we use the
Miller–Bravais indices (hkil) for graphite so that the innermost hexagon and
the next one correspond to indices (0–110) (2.13 Å spacing) and (1–210)
(1.23 Å spacing), respectively. f, Total intensity as a function of tilt angle for
the peaks marked in c. To find the intensity values, each of the above Bragg
reflections was fitted by a gaussian distribution for every angle, which
yielded the peaks’ intensities, positions, heights and widths. The dashed lines
are numerical simulations, in which we used a Fourier transform of the
projected atomic potentials22,23,24 and the atomic form factors reported in ref.
29. g, The same analysis and simulations for a bilayer graphene membrane.
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Figure 3 | Microscopically corrugated graphene. a, Flat graphene crystal in
real space (perspective view). b, The same for corrugated graphene. The
roughness shown imitates quantitatively the roughness found
experimentally. c, The reciprocal space for a flat sheet is a set of rods (red)
directed perpendicular to the reciprocal lattice of graphene (black hexagon).
d, e, For the corrugated sheet, a superposition of the diffracting beams from
microscopic flat areas effectively turns the rods into cone-shaped volumes so
that diffraction spots become blurred at large angles (indicated by the dotted
lines in e) and the effect is more pronounced further away from the tilt axis
(compare with Fig. 2). Diffraction patterns obtained at different tilt angles
allow us to measure graphene roughness. f, Evolution of diffraction peaks
with tilt angle in monolayer graphene. The experimental data are presented
in such a way that they closely resemble the schematic view in e. For each tilt
angle, the black dotted line represents a cross-section for diffraction peaks
(0–110) and (1–210). The peak centres and full widths at half maxima
(FWHM) in reciprocal space are marked by crosses and open circles,
respectively. In two cases (0u and 34u), the recorded intensities are shown in
full by blue curves. All the intensity curves could be well fitted by the
gaussian shape. The solid black lines show that the width of the diffraction
spots reproduces the conical broadening suggested by our model (d and
e). g, FWHM for the (0–110) diffraction peak in monolayer and bilayer
membranes and thin graphite (as a reference), as a function of tilt angle. The
dashed lines are the linear fits yielding the average roughness. The flat region
between 0u to 5u, and also for the reference sample, is due to the intrinsic
peak width for the microscope at our settings.

NATURE | Vol 446 | 1 March 2007 LETTERS

61
Nature   ©2007 Publishing Group



blurring is much stronger for those peaks that are further away from
the tilt axis. This broadening is a distinctive feature of monolayer
graphene. It becomes notably weaker in bilayer samples and comple-
tely disappears for multilayer graphene. From a theory point of view,
the broadening is completely unexpected. To emphasize this, we note
that, for example, thermal vibrations can only reduce the intensity of
diffraction peaks (Debye–Waller factor) but do not lead to their
broadening22,24.

Figure 3 explains how the observed broadening explicitly reveals
that graphene sheets are not flat within the submicrometre area of the
electron beam. The full 3D Fourier transform of a flat graphene
crystal (Fig. 3a) consists of a set of rods perpendicular to the plane
of the reciprocal hexagonal lattice (Fig. 3c). Each diffraction pattern
is then a two-dimensional slice (given by a section of the Ewald
sphere) through this 3D space. In particular, this picture suggests
that the intensity of diffraction peaks should vary without any sin-
gularities (monotonically) with changing tilt angle and the hexagonal
symmetry is preserved for any tilt, as already discussed above. The
increasing broadening of diffraction peaks without changes in their
total intensity implies that the rods wander around their average
direction (see Fig. 3d). This corresponds to a slightly uneven sheet
(Fig. 3b) so that the diffraction pattern effectively comes from an
ensemble of small flat 2D crystallites with different orientations with
respect to the average plane. Figure 3e illustrates that such roughness
results in sharp diffraction peaks for normal incidence, but that the
peaks rapidly become wider with increasing tilt angle. This model
also shows that their total intensity should be practically independent
of the membrane’s roughness and can be described by the angle
dependence for a flat sheet; this is consistent with our simulations
in Fig. 2f.

For quantitative analysis, Fig. 3f and g shows the detailed evolution
of the broadening of the diffraction peaks with changing incidence
angle. One can see that the peak widths increase linearly with tilt and
also proportionally to the peaks’ position in reciprocal space, in
quantitative agreement with our simulations for corrugated gra-
phene. The width of the cones or the linear slopes in Fig. 3f and g
provide a direct measure of the membrane’s roughness. For different
monolayer membranes, we found cone angles between 8u and 11u,
that is, the surface normal deviated from its mean direction on aver-
age by 65u. For bilayer membranes, this value was found to be about
2u (Fig. 3g). We note that the diffraction peaks broaden isotropically
(see Fig. 2c–e). This means that the surface normal in real space
wanders in all directions, and the observed waviness is omni-dir-
ectional. Otherwise, if a graphene membrane were curved only in
one direction, diffraction peaks would spread into a line indicating
the direction of curling. An absolutely incompressible sheet can only
be curved in one direction, not two, and the isotropic waviness un-
ambiguously implies local deformations of graphene. The curvature
of 5u yields a local strain of up to 1%, which is large but sustainable
without plastic deformation and generation of defects25–27.

To estimate the spatial extent L of the corrugations we found, let us
start with two observations. First, L cannot be drastically (more than
a few times) smaller than the coherence length of the diffracted elec-
trons. Otherwise, the above model of incoherent superpositions from
locally flat pieces would be replaced by a coherent superposition
where we would expect sharp peaks and also much stronger devia-
tions between the experimental and calculated intensities in Fig. 2f.
The coherence length is estimated to be about 10 nm, so the corruga-
tions must have a mesoscopic (several nanometres) rather than
atomic scale. Second, the smooth gaussian shape of the diffraction
peaks requires a large number N of different orientations within the
submicrometre illuminated area, which provides us with the upper
limit for L. A minimalist assumption of N 5 100 necessitates
L # 25 nm. These qualitative considerations are in agreement with
our simulated diffraction patterns for corrugated graphene sheets
(see text on numerical simulations in the Supplementary Infor-
mation and Supplementary Figs 2–5). From the known curvature

and size L of the corrugations, we estimate their height to be about
1 nm.

The above order-of-magnitude estimates are also strongly sup-
ported by atomic-resolution TEM imaging of our membranes.
Unfortunately, for monolayer graphene, such smooth waviness could
not be visualized because diffraction intensities vary little with tilt
angle, as discussed earlier (Fig. 2f), and no additional contrast due to
corrugations could be expected or, in fact, observed. On the other
hand, the visibility of the hexagonal lattice for two and more layers
strongly depends on their tilt angle (Fig. 2g) and, accordingly, surface
undulations of few-layer graphene can be expected to result in areas
of different brightness. Such areas are clearly seen in Fig. 4 and have a
characteristic size of a few nanometres, which is somewhat smaller
than the above estimate for L in monolayer graphene where the
ripples could also be larger laterally. Importantly, atomic-resolution
images show that the corrugations are static, because otherwise,
changes during the exposure would lead to blurring and disappear-
ance of the additional contrast.

Perfect 2D atomic crystals cannot exist, unless they are of a limited
size or contain many crystal defects7,8. The observed microscopic
corrugations of 2D graphene in the third dimension provide another,
unexpected way to reconcile the high quality of graphene with its
thermodynamic stability. The fact that the microscopic roughness is
reproducible for different positions on membranes and for different
samples, becomes notably smaller for bilayer graphene and disap-
pears for thicker membranes proves that the corrugations are
intrinsic to graphene membranes. Theoretical investigations of 2D
membranes have predicted their thermodynamic stability through
static microscopic crumpling involving either bending or buck-
ling13–15. The buckling mechanism requires the generation of a high
density of dislocations15 that are neither observed in our atomic-
resolution images nor expected in the case of relatively small (micro-
metre-sized) membranes with strong interatomic bonds. However,
the bending scenario assumes no defects and only requires out-of-
plane deformations involving a significant elastic strain. The latter is
in qualitative agreement with our observations, but further experi-
mental and theoretical studies are needed to clarify the detailed
mechanism of the corrugations in graphene.

Free-hanging graphene is the thinnest conceivable object and thus
offers many exciting directions for future research. The observed

Figure 4 | Atomic resolution imaging of graphene membranes. TEM image
of a few-layer graphene membrane near its edge, where the number of dark
lines indicates the thickness of two to four layers. Because for few-layer
graphene the electron contrast depends strongly on incidence angle,
relatively small (a few degrees) variations in the surface normal become
visible. The atomic-resolution imaging was achieved by using FEI Titan at an
acceleration voltage of 300 kV. Scale bar, 1 nm.
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microscopic roughening seems to be essential for the structural
stability of 2D membranes; their mechanical, electronic, optical
and other properties may be equally extraordinary. We also note that
the presence of these elastic corrugations is consistent with high
mobility of charge carriers in graphene1–3 and may explain some of
its unusual transport characteristics, such as the suppression of weak
localization28. 2D crystal membranes also promise such tantalizing
applications as almost-transparent substrates for high-resolution
electron microscopy or sieving of atoms and small molecules through
the atomic-size benzene rings. Such 2D membranes can be consid-
ered for any other technology in which ultrathin, transparent and
robust substrates offer an advantage (for example, nanomechanical
devices).
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