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Two-dimensional gas of massless Dirac fermions in
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Quantum electrodynamics (resulting from the merger of quantum
mechanics and relativity theory) has provided a clear understand-
ing of phenomena ranging from particle physics to cosmology and
from astrophysics to quantum chemistry1–3. The ideas underlying
quantum electrodynamics also influence the theory of condensed
matter4,5, but quantum relativistic effects are usually minute in
the known experimental systems that can be described accurately
by the non-relativistic Schrödinger equation. Here we report an
experimental study of a condensed-matter system (graphene, a
single atomic layer of carbon6,7) in which electron transport is
essentially governed by Dirac’s (relativistic) equation. The charge
carriers in graphene mimic relativistic particles with zero rest
mass and have an effective ‘speed of light’ c * < 106 m s21. Our
study reveals a variety of unusual phenomena that are character-
istic of two-dimensional Dirac fermions. In particular we have
observed the following: first, graphene’s conductivity never falls
below a minimum value corresponding to the quantum unit of
conductance, even when concentrations of charge carriers tend to
zero; second, the integer quantum Hall effect in graphene is
anomalous in that it occurs at half-integer filling factors; and
third, the cyclotron mass m c of massless carriers in graphene is
described by E 5 m cc *

2. This two-dimensional system is not only
interesting in itself but also allows access to the subtle and rich
physics of quantum electrodynamics in a bench-top experiment.
Graphene is a monolayer of carbon atoms packed into a dense

honeycomb crystal structure that can be viewed as an individual
atomic plane extracted from graphite, as unrolled single-wall carbon
nanotubes or as a giant flat fullerene molecule. This material has not
been studied experimentally before and, until recently6,7, was pre-
sumed not to exist in the free state. To obtain graphene samples we
used the original procedures described in ref. 6, which involve the
micromechanical cleavage of graphite followed by the identification
and selection of monolayers by using a combination of optical
microscopy, scanning electron microscopy and atomic-force
microscopy. The selected graphene films were further processed
into multi-terminal devices such as that shown in Fig. 1, by following
standard microfabrication procedures7. Despite being only one atom
thick and unprotected from the environment, our graphene devices
remain stable under ambient conditions and exhibit high mobility of
charge carriers. Below we focus on the physics of ‘ideal’ (single-layer)
grapheme, which has a different electronic structure and exhibits
properties qualitatively different from those characteristic of either
ultrathin graphite films (which are semimetals whose material
properties were studied recently7–10) or even of other devices con-
sisting of just two layers of graphene (see below).
Figure 1 shows the electric field effect7–9 in graphene. Its conduc-

tivity j increases linearly with increasing gate voltage Vg for both
polarities, and the Hall effect changes its sign at V g < 0. This

behaviour shows that substantial concentrations of electrons
(holes) are induced by positive (negative) gate voltages. Away from
the transition region Vg < 0, Hall coefficient RH ¼ 1/ne varies as
1/Vg, where n is the concentration of electrons or holes and e is the
electron charge. The linear dependence 1/RH / Vg yields n ¼ aVg

with a < 7.3 £ 1010 cm22 V21, in agreement with the theoretical
estimate n/Vg < 7.2 £ 1010 cm22 V21 for the surface charge density
induced by the field effect (see the caption to Fig. 1). The agreement
indicates that all the induced carriers are mobile and that there are no
trapped charges in graphene. From the linear dependence j(Vg) we
found carriermobilities m ¼ j/ne, which reached 15,000 cm2V21 s21

for both electrons and holes, were independent of temperature T
between 10 and 100K and were probably still limited by defects in
parent graphite.
To characterize graphene further, we studied Shubnikov-de Haas

oscillations (SdHOs). Figure 2 shows examples of these oscillations
for differentmagnetic fields B, gate voltages and temperatures. Unlike
ultrathin graphite7, graphene exhibits only one set of SdHO for both
electrons and holes. By using standard fan diagrams7,8 we have
determined the fundamental SdHO frequency BF for various Vg.
The resulting dependence of BF on n is plotted in Fig. 3a. Both
carriers exhibit the same linear dependence B F ¼ bn, with
b < 1.04 £ 10215 Tm2 (^2%). Theoretically, for any two-
dimensional (2D) system b is defined only by its degeneracy f so
that BF ¼ f0n/f, where f0 ¼ 4.14 £ 10215 Tm2 is the flux quantum.
Comparison with the experiment yields f ¼ 4, in agreement with the
double-spin and double-valley degeneracy expected for graphene11,12

(see caption to Fig. 2). Note, however, an anomalous feature of SdHO
in graphene, which is their phase. In contrast to conventional metals,
graphene’s longitudinal resistance rxx(B) exhibits maxima rather
than minima at integer values of the Landau filling factor n (Fig. 2a).
Figure 3b emphasizes this fact by comparing the phase of SdHO in
graphene with that in a thin graphite film7. The origin of the ‘odd’
phase is explained below.
Another unusual feature of 2D transport in graphene clearly

reveals itself in the dependence of SdHO on T (Fig. 2b). Indeed,
with increasing T the oscillations at high Vg (high n) decay more
rapidly. One can see that the last oscillation (Vg < 100V) becomes
practically invisible at 80 K, whereas the first one (Vg , 10V) clearly
survives at 140K and remains notable even at room temperature. To
quantify this behaviour we measured the T-dependence of SdHO’s
amplitude at various gate voltages and magnetic fields. The results
could be fitted accurately (Fig. 3c) by the standard expression
T/sinh(2p2kBTm c/�heB), which yielded m c varying between ,0.02
and 0.07m0 (m0 is the free electron mass). Changes in m c are well
described by a square-root dependence m c / n1/2 (Fig. 3d).
To explain the observed behaviour of m c, we refer to the semi-

classical expressions BF ¼ (�h/2pe)S(E) and m c ¼ (�h2/2p)›S(E)/›E,
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where S(E) ¼ pk2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ �hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4pc *
2)1/2 and the best fit

to our data yields c * < 106m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p2kBTm c/�heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2 T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260 Vas a function of magnetic field B (a) and at constant B ¼ 12 Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20 K; green, T ¼ 80 K; red, T ¼ 140 K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of ,15.8 V at B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localization magnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e�hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4 K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotron massm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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phenomena of the quantum field theory in a condensed-matter
experiment.
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