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We discuss the thermodynamics of geometrically frustrated antiferromagnets
when used as refrigerants for magnetic cooling. Strong magnetic interactions,
high densities of spins and yet suppressed ordering temperatures allow them
to cool with demagnetization faster than conventional dilute paramagnets do.
We have performed adiabatic demagnetization of a sample of gadolinium
gallium garnet, Gd3Ga5O12, from field Bi = 8.0 T to Bf = 1.6 T that
resulted in cooling from Ti = 1.4 K to Tf = 0.1 K.
PACS numbers: 75.30.Sg, 75.50.Ee, 75.30.Kz.

1. Introduction

Refrigeration by means of adiabatic demagnetization of a paramagnetic
salt is the oldest technique of reaching millikelvin temperatures.1 Because of
the relative technological simplicity and independence of gravity it steadily
attracts attention as a rival to the dilution refrigerator.2,3

In the simplest idealized case, a sample containing non-interacting mag-
netic moments has entropy S(B, T ) being a function of the ratio B/T ,

S(B, T ) = f

(
B

T

)
. (1)

Assuming perfect thermal insulation and neglecting the entropy of phonons,
etc. the temperature T is thus proportional to the magnetic field B,

T (B) = Ti
B

Bi
, (2)

where Ti and Bi are the initial temperature and field. Inevitable heat leaks
and extra non-magnetic contributions to the entropy cause the temperature
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to change slower than proportionally to the magnetic field. The higher the
density of magnetic moments n and quantum spin number J , the greater
the magnetic entropy S and thus the sample can absorb more heat.

With increased density of spins, however, the strength of magnetic in-
teractions grows. They cause magnetic ordering or formation of a spin glass
at some temperature Tc, below which the technique does not work as the
entropy is frozen out. Even at temperatures above Tc the cooling is less
efficient because the entropy is reduced,

S(B, T ) = f

(
[B2 + B2

int]
1/2

T

)
, (3)

where the parameter Bint,“internal field,” is a measure of the interactions
in the material.2 Assuming no loss of entropy we again have temperature
decreasing slower than proportionally to the decreasing magnetic field

T (B) = Ti
(B2 + B2

int)
1/2

(B2
i + B2

int)1/2
. (4)

Thus, to obtain the necessary limiting temperature, one should seek a com-
promise between the density of spins and interactions. This is normally
achieved by diluting magnetic materials with non-magnetic molecules like
H2O. To reach temperature about 100 mK, a commonly used example is
ferric ammonium alum (FAA), Fe(NH4)(SO4)2 · 12 H2O, with J = 5/2,
n = 3.55 · 10−3 mol cm−3 and Bint ≈ 50 mT, TN = 26 mK. Because of the
added H2O, these materials are prone to dehydration at room temperature
and should be kept in sealed containers.

There exists another class of spin systems, which have a potential for
magnetic refrigeration. These are so-called frustrated antiferromagnets. They
have a high density of spins placed on sites of special frustrated lattices.
Frustration prevents magnetic ordering even at temperatures much lower
than the Curie-Weiss constant and leaves a finite entropy in the disordered
phase.4 Examples of such systems include garnets (Gd3Ga5O12), pyrochlores
(Gd2Ti2O7), and kagomé antiferromagnets (SrCr8Ga4O19). Among them
gadolinium gallium garnet (GGG) with J = 7/2 and n = 1.42·10−2 mol cm−3

was discussed for the purpose of magnetic refrigeration as early as the mid-
seventies.5,6 The experiments performed on single crystals at temperatures
comparable to the Curie-Weiss temperature (ΘCW = −2.3 K) have indeed
shown a very fast temperature decrease, which origin remained unclear at
that time. In the present work we develop a simple theory based on the
idea of frustration, which predicts a fast temperature decrease on adiabatic
demagnetization for all highly frustrated magnets. We also present our re-
sults of adiabatic demagnetization on high quality polycrystalline samples
of GGG to test the predictions.
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2. Theoretical

Large values of spin of Gd3+ ions (J = 7/2) allow us to simplify the
problem and consider the finite-field behaviour of a classical spin model. Ge-
ometrically frustrated magnets have a macroscopically degenerate ground
state in zero magnetic field, because the minimum energy constraint fails
to select a single classical configuration.4 The exchange interaction constant
I sets the saturation magnetic field Bc = 6IJ (for garnet and kagomé an-
tiferromagnets) or 8IJ (for pyrochlores). Below Bc, the external magnetic
field still does not lift the degeneracy of the ground state; while above Bc the
minimum energy is reached for a single configuration with parallel alignment
of all spins in the direction of field.7 Let us consider magnetic excitations at
B ≥ Bc. The spin system has two degrees of freedom per classical spin or, in
total, 2n modes (n is the density of spins). In the saturated phase all mag-
netic excitations have finite energies. At B = Bc, when the transition takes
place, some of these energies vanish. In contrast to ordinary nonfrustrated
spin systems, frustrated magnets have a whole flat branch of zero-energy
excitations at B = Bc. Their energy varies as ε = gµB(B−Bc), where g and
µB are the g-factor and Bohr magneton, respectively. The density of such
soft excitations, n4, depends on the lattice topology and is equal to n/5 for
the garnet lattice, n/3 for the kagomé lattice, and n/2 for the pyrochlore
lattice.7 At low temperatures and near the saturation field the most signif-
icant contribution to the thermodynamic properties is determined by such
soft modes. If we denote a collective coordinate of a soft mode by yi and of
a usual harmonic mode by zj , then the classical partition function is

Z = Πi,j

∫
dyidzj exp

(
−gµB(B −Bc)y2

i + ωjz
2
j

kBT

)

' Tn

[gµB(B −Bc)]n4/2In−n4/2
, (5)

where ωj denotes the frequency of a harmonic mode and is replaced by a
constant of the order of the exchange I in the last expression. Knowing
the partition function we can calculate the field dependence of the magnetic
entropy,

S(B, T ) = kB

[
n ln T − n4

2
ln(gµB[B −Bc])

]
. (6)

Similar to the above analysis of the cooling rate of paramagnetic salts, we
use Eq. (6) to determine temperature decrease for a frustrated magnet upon
adiabatic demagnetization. It is given by

T (B) = Ti

(
B −Bc

Bi −Bc

)n4/2n

(7)
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from the initial point (Bi, Ti). The temperature decreases faster than pro-
portionally to field, because the entropy in Eq. (6) is no longer a function
of (B/T ), but rather depends on the deviation from the saturation field,
(B − Bc). Rapid cooling is related to a simultaneous condensation of a
macroscopic number of soft modes at B = Bc. Generally, there are different
weak perturbations to the classical Heisenberg Hamiltonian, which will lift
such a degeneracy on energy scales significantly lower than the exchange
coupling constant. For example, these can be quantum fluctuations, next-
nearest neighbour exchange, dipolar interactions, etc. Averaging over the
narrow band-width of the soft modes amounts to replacing the true satura-
tion field by some renormalized field B∗

c < Bc in Eq. (7). Deviations from
the above expressions should be observed at fields significantly exceeding Bc

due to the neglected field-dependence of the energies of harmonic modes ωj .
To conclude this section we note that the derived temperature reduction

(7) with field is valid for all three types of frustrated magnets mentioned
above. Among them, the pyrochlores, which have the largest ratio n4/2n,
should exhibit the fastest temperature decrease. In practice one has always
to compromise by choosing the magnetic material with a suitable value of
the saturation field Bc.

3. Experimental

In the rest of the paper we concentrate on our experimental results for
GGG. The sample was a cylinder (diameter 5 mm, length 38 mm, mass
4.05 g) of a sintered powder GGG suspended vertically in vacuo on six
cotton threads, each about 3 cm long. This was surrounded by a vacuum
can immersed in a 4He bath pumped to T = 1.3− 1.4 K. A superconducting
magnet around the vacuum can provided a vertical magnetic field uniform to
within ±2 % along the sample. No correction for the demagnetization factor
is given here. Two thick-film commercial RuO2 resistors (Phillips 4.7 kOhm
and Neohm 1 kOhm) to act as thermometers and a thin-film strain gauge
as a heater were attached to the sample with vacuum grease; ten manganin
wires (diameter 70 µm, length 30 cm) provided electrical connections to
the feedthrough in the vacuum can. The sample temperature is taken from
the calibration of the Philips thermometer for the range 0.1 - 4.2 K after
correction for the magnetic field.

In our current set-up, it was virtually impossible to pump out all ex-
change gas (4He) after precooling to the initial temperature as low as 1.3 K.
This means that the first steps of demagnetization were not performed un-
der truly adiabatic conditions. Fortunately, after the sample reached about
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0.7 K, the exchange gas quickly froze out on its surface (as monitored by a
helium leak detector pumping on the vacuum can). The heat of adsorbing
4He caused further increase of the sample entropy at these temperatures,
but below 0.7 K the sample was already well thermally insulated.

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 our sample
 our sample
 [110] from B

i
=9.0T, T

i
=2.28K

 [110] from B
i
=6.5T, T

i
=4.16K

 

T
 (

K
)

B (T)

Fig. 1. Experimental temperature vs. magnetic field for two quasi-adiabatic
demagnetizations of the sample of GGG (see text). Dotted and dashed lines
show similar results for single crystals of GGG at higher temperatures.5

In Figure 1 the experimental temperatures vs. magnetic field for two
runs are shown. Note that below Bc ≈ 1.6 T and at T < 0.4 K GGG makes
a transition into a magnetically ordered state (see 8 and references therein).

For comparison the results of adiabatic demagnetization5 of single crys-
tals of GGG (magnetic field along the [110] axis) available down to 0.4 K are
shown in Figure 1 for two starting conditions: Bi = 9.0 T at Ti = 2.28 K and
Bi = 6.5 T at Ti = 4.16 K. At temperatures below 0.7 K they are in good
agreement with our results. One can conclude that, having proper thermal
insulation, we could reach the same final temperature of Tf = 100 mK at
Bf = 1.6 T if started from field of only Bi ≈ 6 T at Ti = 1.4 K.
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The experimental plots of T (B) at B > 1.5 T qualitatively resemble
the predictions of Eq. (7). The fact that they do not quite hit T = 0 at Bc

[as would follow from Eq. (7)] is explained by deviations from ideal classical
Heisenberg behaviour, with the dipolar interactions being the most promi-
nent extra perturbation relevant for GGG. This is why the direct quantitative
comparison of the experimental data with the predictions of our simplified
model for B → Bc is impossible.

4. Conclusion

We have demonstrated, both theoretically and experimentally, that frus-
trated magnets at magnetic fields B > Bc have greatly enhanced entropy
which causes them to cool adiabatically with demagnetization faster than
“conventional paramagnets.”
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