Sound Propagation in Coexistent Bose and Fermi Superfluids in Aerogel

G. Lawes,^{1,*} A. I. Golov,² E. Nazaretski,¹ N. Mulders,³ and J. M. Parpia¹

¹Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, USA

²Department of Physics and Astronomy, Manchester University, Manchester, United Kingdom

³Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA

(Received 1 November 2001; revised manuscript received 31 March 2003; published 12 May 2003)

We report the first observation of longitudinal sound propagation in three dimensionally distributed Bose and Fermi superfluids in an acoustic investigation of phase separated ³He-⁴He mixtures confined to aerogel. At mK temperatures, this inhomogeneous system exhibits simultaneous ³He and ⁴He superfluidity leading to two "slow modes" along with the conventional sound mode. We also infer the superfluidity of isolated bubbles of pure ³He in a large ⁴He concentration sample.

DOI: 10.1103/PhysRevLett.90.195301

PACS numbers: 67.60.-g, 47.37.+q, 67.57.De

Liquid ⁴He (bosons) and ³He (fermions) exhibit distinct mechanisms for condensation into their superfluid states. Our understanding of macroscopically occupied ground states in bosonic systems, exemplified in the strongly coupled limit by superfluid ⁴He, has been extended to the weak coupling limit by recent investigations of Bose-Einstein condensates (BEC) in dilute gases [1]. Current research into ultracold atomic Fermi gases is aimed at promoting Cooper pairing in these systems [2] by cooling boson-fermion mixtures. Researchers have produced a BEC of bosonic ⁷Li or ²³Na atoms coexisting with a degenerate Fermi gas of fermionic ⁶Li atoms, but have not yet succeeded in creating such a system with two superfluid components [3,4].

Concomitant with the investigation of pure Bose and Fermi superfluids, experiments on homogeneous mixtures of ⁴He and ³He have attempted to produce a system in which both components are superfluid [5]. At milli-Kelvin temperatures, ³He-⁴He mixtures with ³He content in excess of 6% phase separate into a pure ³He phase and a ⁴He rich phase [6]. Estimates for the superfluid transition temperature, T_c , for ³He dissolved in the ⁴He rich phase range from 1 to 10 μ K [7], an order of magnitude below present capabilities. However, with the use of porous materials such as aerogel, it has become possible to bring the two separated phases into close contact [8]. In this Letter, we discuss a series of experiments on phase separated ³He-⁴He mixtures in a 98% porous silica aerogel.

The aerogels consist of a network of silica strands with a diameter of a few nm whose density correlations exhibit fractal structure from a few nm to roughly 100 nm [9]. When ³He-⁴He mixtures are introduced into an aerogel, the ⁴He-rich component preferentially coats the surface of the strands, while the ³He component fills the remaining voids [10,11]. Pure ⁴He undergoes a sharp superfluid phase transition when confined to aerogel [12]. Pure ³He and ³He in contact with ⁴He, in 98% open aerogel, also undergo well-defined transitions. Because the ³He superfluid is comprised of *p*-wave Cooper pairs, nonmagnetic scattering from the aerogel impurity is pairbreaking, and suppresses both the superfluid transition temperature and superfluid density [13–15].

Landau's two-fluid model [16] which describes the hydrodynamics of superfluids, predicts the existence of two normal modes in which the superfluid and normal component move either in phase (first sound) or out of phase (second sound). In pure ³He or ⁴He, first sound (similar to ordinary sound) exists both above and below the superfluid transition temperature, while second sound only propagates in the superfluid phase. When the superfluid is confined to a compliant solid such as aerogel with a longitudinal sound velocity comparable to that of the liquid, both the slow and fast longitudinal modes exhibit significant temperature and pressure variations [17,18]. Consequently, they can be excited and detected by pressure transducers [19], or by a heater and thermometer [20]. The slow mode is clear evidence for superfluidity: It exists only at temperatures below T_c .

Three longitudinal sound modes should exist if two independent superfluid components are present [21]. When the normal component is viscously locked in a very rigid porous material [22], such two-component superfluids should reveal two slow modes of coupled oscillations of density and concentration, in addition to the fast mode. We thus expect a mixture of superfluid ³He and ⁴He confined in a *compliant* aerogel to possess *three* longitudinal modes. In this Letter, we concentrate on measurements of the slow modes in the aerogel filled with ⁴He-³He mixtures, and present a hydrodynamic multicomponent superfluid model that provides the framework for the understanding of these modes.

Our cell consists of a cylindrical cavity of length 1.52 cm filled with a 98% porosity aerogel. Diaphragms at each end with piezoceramic material attached serve as the speaker and microphone. As we sweep the drive frequency, sound resonances appear as peaks in the signal at the microphone. The superfluid transition temperatures are determined by tracking the low frequency slow mode while the temperature slowly increases. The ⁴He concentration in the aerogel is measured using a coaxial

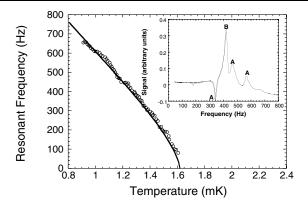


FIG. 1. The pure ³He in aerogel slow mode resonant frequency as a function of temperature. The mode's frequency \Rightarrow 0 when the superfluid density vanishes at $T_c \approx 1.62$ mK. The solid line is the prediction from the model described below. Inset: A representative spectrum for ³He in aerogel at 1.35 mK. Resonances labeled A are the first three slow mode harmonics. B is a temperature insensitive Helmholtz resonance.

capacitor also filled with a 98% aerogel and attached to the resonator volume. The experiment was cooled by a nuclear demagnetization stage and the sample temperature was measured using a ³He melting curve thermometer.

The behavior of the superfluid sound modes in the cell was characterized by filling the aerogel with pure ³He at 17.2 bars. At low temperatures, we observed a resonance in the acoustic spectrum which shifted monotonically towards zero frequency as the cell warmed and vanished at 1.62 mK (see Fig. 1). This is consistent with other measurements of ³He in a 98% porosity aerogel at this pressure [9]. We interpret this resonance as arising from the slow mode of superfluid ³He in aerogel.

At a ⁴He fraction of 3% of the total number density, the aerogel strands were completely covered with a solid layer of ⁴He atoms with the remainder of the sample filled with ³He. The spectrum for this mixture was practically unchanged from that of pure ³He. In particular, there was no signature of a superfluid ⁴He component at any temperature. The only effect of plating the aerogel with solid ⁴He was to increase the ³He superfluid transition temperature by 70 μ K due to a change in the ³He quasiparticle scatting conditions, consistent with previous observations of T_c of ⁴He-³He mixtures in aerogel [15].

Increasing the ⁴He concentration of the mixture to 10.5% had a dramatic effect on the low temperature acoustic spectrum. At this ⁴He content, the strands are coated with (on average) three layers of fluid ⁴He, and we observed a resonance in the spectrum well above the ³He superfluid T_c . We unambiguously identified this new mode as arising from superfluidity in the ⁴He component of the mixture by tracking it in temperature until it vanished at 337 mK, close to the expected ⁴He superfluid transition temperature in this mixture (see right panel of Fig. 2) [8,10]. By mK temperatures, this mode's frequency

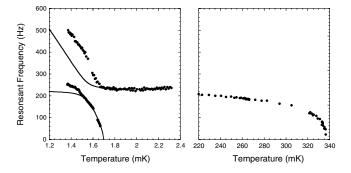


FIG. 2. The right-hand panel shows the resonant frequency for the high velocity slow mode in a mixture containing 10.5% ⁴He. This mode vanishes at the ⁴He superfluid T_c (337 mK). The left panel shows the continuation of this mode to lower temperatures together with the onset of the low velocity slow mode with the model frequencies indicated by the solid lines.

is nearly constant, consistent with the saturation of the ⁴He superfluid fraction. At very low temperatures (~ 1.6 mK), the acoustic spectrum for a 10.5% ⁴He mixture in aerogel shows a resonance that increases from zero frequency as the temperature is lowered below the onset of the ³He superfluidity. Simultaneously, the higher velocity slow mode exhibits a continuous increase in its resonant frequency.

As the ⁴He fraction in the aerogel was increased to 23%, 57%, and 71%, we observed qualitatively similar behavior to that seen in the 10.5% ⁴He sample (see Fig. 3). In all cases, there is a continuous and sizable positive shift in the resonant frequency of the faster slow mode as the mixture is cooled below the ³He T_c . We observe clear slow modes with an onset within 25 μ K of the value for only a thin ⁴He superfluid layer coating the aerogel. This suggests that the global value of T_c is determined mainly by

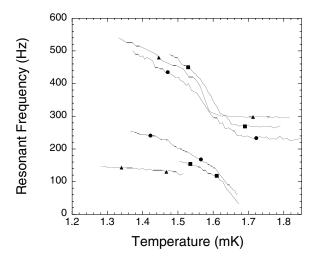


FIG. 3. These curves show the resonant frequency of both the slow modes in mixtures with 10.5% (circles), 23% (squares), and 71% (triangles) ⁴He versus temperature.

the onset of superfluidity in the ³He located in the percolated network of largest voids.

While a complete hydrodynamics of inhomogeneous phase separated mixtures is beyond the scope of this Letter, we present a simplified model, valid only for low frequencies and small concentrations of ⁴He, that captures the observed behavior. Consider a system consisting of phase separated incompressible ³He and ⁴He in an aerogel (with *constant* mass and number densities ρ_3 , n_3 and ρ_4 , n_4). The fluids occupy volume fractions $\phi_3(\mathbf{r}, t)$ and $\phi_4(\mathbf{r}, t)$ and have densities (per unit volume of the sample) $\tilde{\rho}_3(\mathbf{r}, t) = \phi_3 \rho_3$ and $\tilde{\rho}_4(\mathbf{r}, t) = \phi_4 \rho_4$. The aerogel has a density $\rho_a(\mathbf{r}, t)$ and takes up the remaining volume with a fraction $\phi_a(\mathbf{r}, t) = 1 - \phi_3 - \phi_4$. Two superfluid components, with superfluid densities $\tilde{\rho}_{3s}(\mathbf{r}, t)$ and $\tilde{\rho}_{4s}(\mathbf{r}, t)$ move independently with velocities $\tilde{\mathbf{v}}_{3s}(\mathbf{r}, t)$ and $\tilde{\mathbf{v}}_{4s}(\mathbf{r}, t)$ [23]. The normal components are thus $\tilde{\boldsymbol{\rho}}_{3n} =$ $\tilde{\rho}_3 - \tilde{\rho}_{3s}$ and $\tilde{\rho}_{4n} = \tilde{\rho}_4 - \tilde{\rho}_{4s}$. At these frequencies, normal ³He and ⁴He are viscously locked to the aerogel and move together at velocity $\mathbf{v}_n(\mathbf{r}, t)$ with an associated density $\tilde{\rho}_n = \tilde{\rho}_{3n} + \tilde{\rho}_{4n} + \rho_a$. We assume that the ³He-⁴He interface follows the aerogel, in equilibrium, and that any drag between the ³He and ⁴He superfluids is negligible. The continuity equations for ³He, ⁴He, and aerogel are

$$\dot{\tilde{\boldsymbol{\rho}}}_{3} + \nabla \cdot (\tilde{\boldsymbol{\rho}}_{3s} \tilde{\mathbf{v}}_{3s} + \tilde{\boldsymbol{\rho}}_{3n} \mathbf{v}_{n}) = 0, \qquad (1)$$

$$\dot{\tilde{\boldsymbol{\rho}}}_4 + \nabla \cdot (\tilde{\boldsymbol{\rho}}_{4s} \tilde{\mathbf{v}}_{4s} + \tilde{\boldsymbol{\rho}}_{4n} \mathbf{v}_n) = 0, \qquad (2)$$

$$\dot{\boldsymbol{\rho}}_a + \nabla \cdot (\boldsymbol{\rho}_a \mathbf{v}_n) = 0. \tag{3}$$

Neglecting the entropies of both ³He and ⁴He, the linearized dynamic equations are

$$\dot{\tilde{\mathbf{v}}}_{3s} = -\nabla \mu_3, \qquad \dot{\tilde{\mathbf{v}}}_{4s} = -\nabla \mu_4, \qquad (4)$$

$$\tilde{\boldsymbol{\rho}}_{3s}\dot{\tilde{\mathbf{v}}}_{3s} + \tilde{\boldsymbol{\rho}}_{4s}\dot{\tilde{\mathbf{v}}}_{4s} + \tilde{\boldsymbol{\rho}}_{n}\dot{\mathbf{v}}_{n} = -\nabla P - \nabla P_{a}.$$
(5)

The ³He chemical potential depends only on pressure,

$$\nabla \mu_3(\mathbf{r}, t) = \frac{1}{\rho_3} \nabla P(\mathbf{r}, t), \tag{6}$$

but the ⁴He is adsorbed on to the aerogel strand as a film of thickness $h(\mathbf{r}, t)$, estimated for thin films to be of the order of $h = \phi_4/A$ [where $A(\mathbf{r}, t) \approx 1000 \text{ m}^2 \text{ g}^{-1} \times \rho_a(\mathbf{r}, t)$ [24] is the aerogel surface area per unit volume], experiences a van der Waals potential $w(h) = -\gamma h^{-3}$, where $\gamma = 1.5 \times 10^{-50} \text{ J m}^3$ [25]. As a result, we have

$$\nabla \mu_4(\mathbf{r}, t) = \frac{1}{\rho_4} [\nabla P(\mathbf{r}, t) + (n_4 - n_3) \nabla w(\mathbf{r}, t)], \quad (7)$$

$$\nabla w = \frac{(3\gamma A)^3}{\phi_4^3} \left(\frac{\nabla \phi_4}{\phi_4} - \frac{\nabla \phi_a}{\phi_a} \right). \tag{8}$$

The stress in the aerogel, $\nabla P_a(\mathbf{r}, t)$, is related to the strain

 $\phi_a^{-1} \nabla \phi_a$ using the empty aerogel sound speed c_a :

$$\nabla P_a = c_a^2 \rho_a \frac{\nabla \phi_a}{\phi_a}.$$
(9)

The details can be found elsewhere [26]. The equations can now be linearized and, after inserting plane wave solutions, one solves for the sound speeds of the two slower modes. For pure ³He, there is only a single slow mode with a dependence (for small $\tilde{\rho}_{3s}$) given by

$$c_2 = \frac{c_a \rho_a^{1/2}}{\rho_3} \tilde{\rho}_{3s}^{1/2}.$$
 (10)

The predictions of this model for pure ³He in aerogel are plotted in Fig. 1. In the mixture, there are two solutions: With decreasing temperature, one mode starts from zero at the ⁴He T_c and is continuous through the ³He T_c , while the other mode only propagates below the ³He T_c . For values of ϕ_4 of a few percent, these speeds can be approximated as follows. The faster mode, continuous through the ³He T_c , has limiting behavior given by

$$c_2 = \frac{[3(n_4 - n_3)\gamma A^3]^{1/2}}{\phi_4^2 \rho_4} \tilde{\rho}_{4s}^{1/2}, \qquad (11)$$

for $T \ge T_c$, and Eq. (10) for $T \to 0$. The other mode starts from zero as Eq. (10), but in the limit of $T \to 0$ approaches the temperature-independent Eq. (11). In Fig. 2, we show the predicted resonant frequencies for pure ³He and a ³He-⁴He mixture with a volume fraction of liquid ⁴He $\phi_4 = 0.06$ (corresponding to a ⁴He concentration of 10.5% after subtracting the solid ⁴He layer). The agreement between the experiment and model (exhibited in Fig. 2) is quite good given the simplifying assumptions.

We have also ventured to extend the experimental parameter space well beyond the applicability of the simplified model. By examining the behavior of high ⁴He concentration mixtures, we also investigate the superfluidity of isolated bubbles of ³He in ³He-⁴He mixtures in aerogel. Since the bulk solubility of ³He in ⁴He at 17.2 bars is approximately 8% [27], the ³He rich phase fills only 4% of the free volume when a 89% ⁴He mixture is introduced into the aerogel and is confined to the largest voids which are on the order of 100 nm. The regions of high silica density are occupied by the ⁴He rich phase.

The left-hand panel of Fig. 4 shows the low temperature, low frequency acoustic spectrum for the 89% ⁴He mixture. There is no evidence for a well-defined low velocity slow mode, although there are some very small unidentified low frequency features in the spectrum below T_c . Since the ³He phase does not percolate, there will be no hydrodynamic mass flow of the ³He superfluid. However, the higher velocity slow mode is still sensitive to the ³He superfluidity [as expressed in Eqs. (10) and (11)], and we observe an increase in its frequency at $T \approx$ 1.6 mK. This observation suggests the exciting possibility that the ³He superfluid order parameter can develop in isolated coherence length sized droplets when confined by

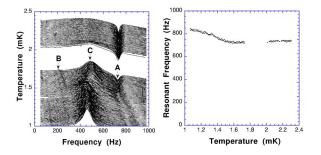


FIG. 4 (color online). The left panel shows the response of the microphone transducer, offset vertically by temperature. The resonance labeled A is the high velocity slow mode, the peak labeled B is a superfluid Helmholtz mode from the ³He outside of the cell, and the resonance labeled C is the Helmholtz mode in Fig. 1. The right panel shows the center frequency of the high velocity slow mode versus temperature.

superfluid ⁴He, perhaps even in aerogels whose density precludes superfluidity in pure ³He [28]. In principle, the bubble size could be varied by changing the ⁴He-³He ratio at fixed pressure in a given aerogel.

Confining ³He and ⁴He to a porous aerogel has led to the first observation of three-dimensional interpenetrating (although spatially inhomogeneous) superfluids. We have observed an additional low velocity longitudinal sound mode that is not present in pure superfluids confined to aerogel but arises only when two distinct superfluid components are present. The model we propose for understanding the hydrodynamics agrees very closely with the experimental data, although it is applicable only for small ⁴He concentrations.

It will be interesting to see if a similar model is appropriate for describing the hydrodynamics of multiple component superfluidity in Bose-Einstein condensates, or in combinations of Fermi-Bose condensates. Besides opening a new regime for investigating superfluid hydrodynamics, our measurements provide new insight into superfluid behavior in confined geometries. We find strong evidence that T_c is fixed by the ³He in the largest pores and does not change significantly as considerable fractions of ⁴He are introduced into the system.

The authors acknowledge helpful conversations with P. Brusov early in this research. Support in the U.S.A. was provided by the NSF under DMR 9970817 and DMR 0202113. A. I. Golov was supported by the EPSRC under GR/N35113.

- [2] H.T. C. Stoof et al. Phys. Rev. Lett. 76, 10 (1996).
- [3] A.G. Truscott *et al.*, Science **291**, 2570 (2001).
- [4] Z. Hadzibabic *et al.*, Phys. Rev. Lett. **88**, 160401 (2002).
- [5] J. R. Owers-Bradley *et al.*, Phys. Rev. Lett. **51**, 2120 (1983).
- [6] E. M. Ifft et al., Phys. Rev. Lett. 19, 831 (1967).
- [7] J. Bardeen, G. Baym, and D. Pines, Phys. Rev. Lett. 17, 372 (1966).
- [8] S. B. Kim, J. Ma, and M. H.W. Chan, Phys. Rev. Lett. 71, 2268 (1993).
- [9] J.V. Porto and J. M. Parpia, Phys. Rev. B 59, 14583 (1999).
- [10] N. Mulders and M. H. W. Chan, Phys. Rev. Lett. 75, 3705 (1995).
- [11] A. Golov, J.V. Porto, and J. M. Parpia, J. Low Temp. Phys. 110, 591 (1998).
- [12] G. K. S. Wong et al., Phys. Rev. Lett. 65, 2410 (1990).
- [13] J.V. Porto and J.M. Parpia, Phys. Rev. Lett. 74, 4667 (1995).
- [14] D.T. Sprague et al., Phys. Rev. Lett. 75, 661 (1995).
- [15] A. Golov, J.V. Porto, and J. M. Parpia, Phys. Rev. Lett. 80, 4486 (1998).
- [16] L. D. Landau, J. Phys. (Moscow) 5, 71 (1941).
- [17] D. L. Johnson, in *Frontiers of Physical Acoustics*, Proceedings of the International School of Physics "Enrico Fermi", Course XCIII (1986), p. 255.
- [18] M. J. McKenna, T. Slawecki, and J. D. Maynard, Phys. Rev. Lett. 66, 1878 (1991).
- [19] A. Golov et al., Phys. Rev. Lett. 82, 3492 (1999).
- [20] N. Mulders et al. Phys. Rev. Lett. 67, 695 (1991).
- [21] I. M. Khalatnikov, Pis'ma Zh. Eksp. Teor. Fiz. 17, 534 (1973).[JETP Lett. 17, 386 (1973)].
- [22] V. P. Mineev, Zh. Eksp. Teor. Fiz. 67, 683 (1974) [Sov. Phys. JETP 40, 338 (1975)].
- [23] The values of the ³He superfluid density $\tilde{\rho}_{3s}$ at p = 17.2 bars with or without ⁴He (suppressed down to $0.3\rho_3$ at T = 0) were taken from measurements in similar aerogels [19]. We take as a fitting parameter $c_a = 60$ m/s, similar to the measured value reported in [19]. For ⁴He, the tortuosity factor $\alpha_4 \approx 10$ [11] was used to account for the momentum exchange between the ⁴He superfluid fraction and the normal component, $\tilde{\rho}_{4s} = \phi_4 \rho_4 / \alpha_4$. The effective superfluid velocity is then defined as $\tilde{\mathbf{v}}_{4s} = \alpha_4 (\mathbf{v}_{4s} \mathbf{v}_n) + \mathbf{v}_n$, where \mathbf{v}_{4s} is the macroscopically averaged superfluid velocity.
- [24] The specific surface area of $1000 \text{ m}^2/\text{g}$ was measured by helium BET adsorption on a similar 98% porous aerogel.
- [25] E. Cheng and M.W. Cole, Phys. Rev. B 38, 987 (1988).
- [26] A. I. Golov (unpublished).
- [27] G. E. Watson, J. D. Reppy, and R. C. Richardson, Phys. Rev. 188, 384 (1969).
- [28] T. Hall and J. M. Parpia, Bull. Am. Phys. Soc. 34, 1197 (1989).

^{*}Current address: Los Alamos National Laboratory, Los Alamos, NM 87545.

^[1] M. H. Anderson et al., Science 269, 198 (1995).